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This paper is concerned with the problem 11) of the mfniraX tirt clapSing 
before the encounter of two linca~ly controlled objects described by identi- 
ca2 equatfonB. Furthermore, It is assumed that constraints on the control- 
ling forces allow only contimtous motions of the objects. 

Let us consider the problem cl] on the mInima% t* T elaPS%.X& beicFe 

the'kounter of the pursuing (y(t)) and pereued (r(t)) m&lone, which are 
described reapectivelg by Equations 

f&/c& = Ay + Bu, dz f dt = AZ+ BP (13) 

Here y , t are the n-dimensional vectars of the phase CoordfsratGS of the 
controlled objects; U, of are the I--dimensional VeCtOrS OP the controlling 

forces; A , P are constant matrices describing the system. All the vec- 

tors considered are treated as column vectors. An arrterisk l represents a 

transposition. In agreement with El], it 1s assumed that the control 

resources u(.t) and s(t) which ean be used for t 2 T at each instant di 

tbIbe T, are constrained by the condition 

PT cu WI < P (4, PI [?I (t)I < V (2) (1.2) 

'we shall assume, that for any 6 > z the quantity p1 [qj (t)], COmBpond- 

ing to functions m(t) satisfying the condition m(t) = 0 when if>+, can 

be interpreted as the norm pT,~ [w(t)] of the lfnear functional VW 112 (t)], 

generated by the function la(t) on the adequate norm@d apace (h(t)] of the 

functions h (t) (z f t <@) (see, far1 Instance, a similar case in (21, 

P . 6 and 7). Thus we shall limit ourselves to conditions (1.2) which ell- 

mlnate discintinuities or u(t) and z(t) + 

The above conditions are satisfied for instance by constraints (1.2) of 

the rorm 
II TJ (If II \< PI II 7' Wll < v ~>>=const) (1.3) 
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or the conditions 

(1.4) 

but are not satisfied by constraints of impulsive type 
co co 

s II u it1 II dt <CL (-0, 
s II 2J P) II dt < y w 

7 T 
(1.5) 

since the constraints (1.5) allow controls 
instantaneous 6-functions : 
;iethePse,, ;jectors 

a(t - t,) 
u(t) and v(t) which can include 

V(t) and t(t) * 
, which would lead to discontinuities 
(In (1.3) to (1.5) and further on, 

W represents the Euclidian norm of the vector m ). 

It Is assumed, that a variation In the quantities P(T) and V(T) with 
va.riatIons of the time T is obtained b 
Instance, If for TZC &<6 thecontrols 

a consumption of resources. For 

in (1.4) 
ut t) and v*(t) were obtained, then t 

a a 

b2 = P’ (6) - p2 (~1 = - 1 II ut (t) II2 dt, A+ = v2 (6) - v2 (T) = - 
s 

11 v* (t) 112 dt 
T 

We shall consider the problem [l] of the minimax of time I elapsing 

before the encounter of the motions y(t), t(t) . It is assumed that the 

goal of the pursuit is reached at the Instant of encounter t = 7 + T for 

which all the coordinates y, (t) and I, (t) (t - 1,. . ., n) coincide. Thus, 

we have a problem of minvmaxu T = maxvmin, T with the condition 

~J(T + T) = ~(7 + T) and the assumption that the controls u and v at any 
instant t=-r are obtained according to the feedback principle for reali- 

zable values of y (T), 2 ('C), p ('c), Y (T), i.e. In the form of functions 

u [Y (x), 2 ($7 P (x). v (x)1 and v [Y (T>, 2 (x)9 CL ("t), v ($1. 

We shall assume that the systems (1.1) are fully controllable [3]. 

The assumption of full controllability does not limit the generality. In 

fact, if the systems are.not fully controllable, the question of the encoun- 

ter of the motions (1.1) has a meaning only when the difference X(T)= y(7)- 
- Z(T) of the vectors v(r) and Z(T) belongs to the subspace ,? , generated 

by the column vectors of the matrix {B,&, . . ., A”-‘B). 

Otherwise, it would not be possible to find controls u t) and u t) 
(t z T) which would yield an encounter of the motions &t I and ~(t I at a 
finite value of time 6 > z . !Che valld3ty of this statement results from 
the general theory of control by linear objects (see, for Instance (2 and 31). 
In the space I , the systems (1.1) are fully controllable. There follows, 
that when the systems(l.1) are not fully controllable in the original n-dimen- 
sional phase space of the vectors v and z , the problem of the encounter 
of the motions y(t) and z(t) can be reduced to the problem of the encounter 
of those motions In a phase space x of lower order, where those systems 
are fully controllable. 

2. In the general case the solution of the conflicting problem of the 

mlnimax tdme occurring before the encounter of the two motions (and even the 

statement of the problem)meets some serious difficulties (see [l and 43). 

Thus, for a particular range of problems In the particular case described 

In Section 1, It Is possible to formulate a simple rule determInIng a ratlon- 

al method for choosing the controls u and v . This rule has a simple 

Intuitive meaning formulated as follows. 
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We shall compare the problem of pursuit (1.1) with the following problem 

of optimum quick response 15 and 63. Find the control m(t) constrained by 

the condition 
pz [w (N < 5'(T) (2.1) 

and transferring the system 

iix/dt=Ax Bw (2.2) 
from the position r = X(T) to the position X(T + 2') = 0 in the smallest 

possible time T = -Tt, I.e. it 1s necessary to determine 

T” = min for z (‘c + 5-O) = 0, P *, r+p PI < 5 (7) P-3) 

If To [X (‘C), G(T)] and wro (t) represent the solution of this Problem, 

then for the original pursuit problem we take 

T = T” [y (T) -- z (t), p (z) --Y (z)l = min,, max” T, 

and we determine the optimum control with the equations 

u” [y (T), 2 (z), p (T), v (t)] = lUTow cc @) 
P w - v @I (2.4) 

Here It Is assumed that P(T) > V(T) , for the realizable Values of 

x (z) = Y (T) - 2 (% P (T) = P ('6) - Y (7) there exists a finite Solution 

2'" 1~ (z), 5 @)I of the problem of quick response (2.2),(2.3). Furthermore, 

we shall denote by the symSo1 c the domain 

5 > 0, To ix, Cl< 00 (2.5) 

of the space [x, ;) in which the problem (2.2),(2.3) has a solutlon for 

5 (2) = 5, 5 (z> = x 

We shall illustrate the meaning of the formulated rule with the example 
of pursuit problem for uhich conditions (1.2) of the type (1.3) are present. 
Furthermore, we shall limit ourselves to the simplest case for which r = n 
and the matrix _D Is nonslngular, i.e. the case In whJch the dlmenslons of 
the vectors 
satisfies The %?~?~&m?&!at at some 

= v(t) -z(t) 

Z(T) has been realized, and that 

a constant. If for t 5 7 both controls 
domEA; C (2.5). Here C Is 

are In agreement wlth 
the equality (2.4) at every'instant before t:e enco;ter, I.e. If 

WtO PIP 
u (t) = ZP (t) = IL--y, 

wt” PI v 
v (1) = Do (2) = IL-_v 

then the conditions (1.3) will be fulfllled, and In Equation (2.2) for tz T 
we have w (t) = w,"(t). Then there follows from the meaning of 
equality x(t) = 0 , I.e. the encounter of the mOtlOnS p(t) 
occur for the first time for t = T+ To [z(z!,<j. 

We shall assume now, that the control u(t) for 2 2 T Is modified con- 
tinuously until the encounter, according to Equatlon (2.6), and that the 
control u(t) is chosen arblt;;;;lz,;;ep$g in mlnd the constraint (1.3). 
T,et us examine the function This function 1s definite for 
all z and ; of the domaln C poSltT;e deflnlte In 0 
for x # o., and for the problem'(2.2),(2.3) 

, differentiable 
represents an 0 

function 161 This last ccnditlon mean that the derivative P 
tlmum Llapunov 
ay/dt) of the 

function r/c&)] satisfies Bellman's equation 16 and 73 along the motion x(t) 
of the system (2.2) when controlled by * m(t) 

(2.7) 
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Since 

= [grad Y]* [ Az + Bw] 

then from (1.3), (2.1) and (2.7) there follows C6I 

(2.8) 

B* [grad Ylc 

lot* “I = - I( B* [grad Y] Ii (2.9) 

Computing the derlvatlve (dV/dt). for w = IL - v"(t) , then one can check 
the valldlty of the Inequality 

dV (---I dt u-E” h -1 

Integrating the Inequality with respect to time for t ? T we get the 
inequality 

v [z (t)] c> 1; Ix (41 - (t - z) = To [z (T), 51 - (t - T) (2.11) 

the right-hand side of which Is positive for t < T + F. F5ut this means 
that for the choice t: = a"[z(t),[l according to 
motlons < T + #t) and z(t) , I.e. the equality x(t 

2:6i, ty~cmnun;; ;&the 

1 It has be& 
because the equality HZ] = 0 must be saksfied for r = 0 
impllr*.tly assumed here that during the motion, the point 

z (1) = y (t) -- 2 (t) does not leave the domain G ) . 
If the point x(t) leaves the domain G for some Intervals of time. then 

the rule (2.4) cannot be used during those intervals. However, by choosing 
v(t) arbltrarlly (\lu(t)li i v) in those Intervals of time, we can find 
that in such a case the encountk of v(t) and t(t) does not happen for 
t<r -i- T” [Z(T), 51, if only the control of the motion z(t) follows the rule 
(2.4) In the domain C . 

On the contrary, If for t r T It Is assumed that u = u"(t) (2.61, we 
get the Inequality 

dv 

!-) dt uo_-u G -1 (2.12) 

from which there follows that the point x(t) = y(t) - r(t) does not leave 
the domain G before the encounter. 

The integration of (2.1?) yields the inequality 

v [x (01 d y 12 (41 - (t - z) = To [z (z), 51 - (t - z) (2.13) 

From the lne uality (2.1 
encounter of v t) and 4 ~(t 3 

), there follows that for 1~ = up(t) (2.6) the 
occurs not later than for t = 7 + F, since 

for x # 0 we have fir] > 0 . 
Thus, the control (2.4) in the consldered case, actually guarantees the 

minimax of the time of the encounter. Here, that minimax coincides with the 
maximum and the game [8] corresponding to the problem of pursuit has a SadAle 
point T"= TuOIUo, Consequently, the use of the general rule formulated above, 
turns out to be justified In the present case. 

3. In the general case, a rigorous basis for the rule given in Section 2, 
meets with serious dlfflculties. Furthermore, It is possible to have sltua- 
tions for which either the rule turns out to be wrong or cannot be utilized 
because for the realizable values of i(T) = P(7) - VZT) an~XJ!j;=C#;{-z(7)1 
the problem (2.2),(2.3) does not have a finite solution . 
However this does not affect the validity of the formulated rule, since it 
can serve as an indicator for the choice of an optimum control u0 and u3 
for a rather large class of cases. 

We shall point out two difficulties which are met when substantiatinrr the 
formulated rule. For that purpose, we shall discuss, for instance, the P-W- 
suit problem In the case of multid?menslonal objects I and z(t) contrc,l- 
led by scalar controls u and v which are restricted by the constraints 
(1.3). It seems to be more difficult to make the proof following the c-cl!ene 
described In Section 2 than in the case 7- = r: considered in Section 2, 
since the function fix] = F[J-, u - w] is not smooth any more. Because of 
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the nonamoothness of the function tir] the dtrlvatlon and use of relatlons 
of the type (2.10) to (2.13) requires an'addltlona3 aIAalysi8 (see the analog- 
ous case ln the Investigation of the problem of optimum control in [9]). 
Another serious case which co 
the class of the controls u(t and u(t) which can be realized In the system “p 

llcates the investigation la the question of 

(1.1) when one of the Partner6 followa the rule 2.4) and the other diverges 
from It. (If both partners follow the rule8 (2.4 f the class of function8 
u”(t) and u”(t) (2.6) 18 determined by the claes’of elementa 
functional space [to(t)] which has the norm 

w(t) in the 
pT, t+TD (W (1)) (see above Page 

263 I\. 
In the example, considered In [ 1 J (page 121, It Is shown that In the pur- 

suit problem which followa the rule u I UO( 
the case of &he constraint (1.3) for r < n t 

) in agreement with (2.61, in 
there n - 2, f - 1) slipping 

conditions can appear (there for t’ (1) E 0 + u” (1)). Consequently, in such 
cases, the statement of the pursuit problem must allow, In agreement with 
the feedback principle, realizations of the controlling algMl6 u(t) and 
u( ) of a more general nature than the class of element6 m(t) of the space 
[wft)j which has the norm ps (~1. 

The conditions pointed out, as well as some other facts which art con- 
sidered below In Sectiona 6 and 8 justify the expediency of the lnvestlgatlon 
of the general rule formulated In Section 2 for different concrete Classes 
of the constraints (1.2). 

The purpose of the present paper is to Investigate the rule (2.4) In the 
case of constraints (1.2) of the form (1.4). This lnvestlgatlon constitute8 
the topic of Sectlona 5 and 9. 

4, Let us consider the pursuit problem formulated In Section 1. We shall 

assume that the control resources are eonstrained by the conditions (1.4). 

This means that, beginning from any Instant of time 
controla u(t) and u(t) limited by the conatralnts 

t 
1.4 f 

only the 
12 ie realized 

in the system8 (1.1); whereupon If the controls u,, t) and v,,(t) were rcal- 
ized for T < t < r) , then 

z 

There follows that If it some Instant t , the functions u(t) and u(t) 
are continuous, then * = II u (0 II” -- 

dt q& , (4.2) 

Let us specify the statement of the problem from the Point of view of the 

class of permissible realizations of u(t) and v(t) . We shall ray that the 

control 
U = U [y W, z (Q, p (0, y (01 (4.3) 

Is permlsalble If, for any arbitrary functlOn u(t) , satisfying (4.l), EQU- 
tlon (4.3) determines a continuous reallzatlOn of u(t) satisfying (4.11, 
whereupon the reallzations of v(t), x(t) and p(t), v(t) are solutions of 

the differential equations (1.1) and (4.2) (at least until the q~tltle0 

v(t), a(t), lJ(t), v(t) remain in the domain in which the function (4.3) Is 

deflnlte). In an analogous manner the permissible control 

v = v [Y tz>, 2 t-4 p (3, y (41 (44 
can be determined. 

Let us mention finally that the permlsslble controls (4.3) and (4.4) are 
mutual3.y permlaalble, If they generate contlnous realltatlons of the COntrOlO 

u(t) and v(t) , whereupon the realleatlons of v(t) , s(t) , cl(t) and v(t) 
satisfy the differential equations (1.1) and (4.2) (in the domain in whldh 
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the functions (4.3) and (4.4) are deflnlte). We shltll say that the mutually 

permissible controls (4.3) and (4.4) close the system (1.1) with a dlfferen- 

tlal feedback loop. Later on, we shall Investigate the original pursuft 

problem (1.1),(1.4) for controls (4.3) and (4.4) which close the system (1.1) 

with a differential feedback loop. 

5. We shall show In this section, that In the case of a constraint (1.4) 

the rule (2.4) determines the permlsslble controls u (4.3) and u (4.4) 

which close the system (1.1) by a differential feedback loop. The following 
statement Is valid. 

Lemma 5.1. In the neighborhood of each point x = X(T) and 

c - c(7) ’ 0 , in which the problem (2.2),(2.3) has a finite solution 

rotx,c1 , the quantities PCX,CI and ur,“(t) are continuous in x and c. 

Proof . In [6], It Is shown, that the quantity P[x,{] 1s deter- 
mined from Equation 

7 (T) = mini 
IS 
T 11 B*F-’ (t)* II/’ dt 1 = + for 2*1 z-1 (5-l) 
0 

The optimum Jontrol wo,O(t) la determined by Equation 

MT0 (t) = B*F-’ (t)*i* (5.2) 

In which Lo Is a vector proportional to the solution of the problem (5.1). 
The vector 1. is determined from Equation 

T 

Ill F-1 (t) BB*F-’ (t)* dt 3 I” = - z 

0 
(5-3) 

the determinant of which 
_T 

& F-1 (t) BB*F-1 (t)* dt 1 
0 

is different from zero for all T > 0 when the conditions of full control- 
lablllty art met C3 and 61. 

Here F-l (t ) Is the Inverse of the fundamental matrix F(t) of the syetem 
dx/dt - Ax . The function ~(2’) in the left-hand side of (5.1) Increases 
striotly with 2’ , since the lntegrand of (5.1) can become zero when I # 0 
only in separate point8 t , Similarly, the quantity y la continuous In 
x . Thus on the basis of a theorem on impllclt functions, we conclude that 
Equation 15.1) determines a function ZP[x,c] continuous in x and C . 
This proves the lemma. 

From Lennna 5.1 there follows that the functions u” and v0 determined by 

Equations (2.4) are continuous In ~(7) , a(~) , P(T) and ~(7) of the open 
dom&ln a (2.5) of the space x = y - 1 , { = CI - v . Consequently, substi- 

tuting the quantltles 
lUtO (t) c1 W 

in Equations (1.1), one obtains a complete set of Equations (1.1),(4.2), the 
right-hand sides of which a_re continuous in the domain G . Therefore, the 

ryatem (1.1),(4.2),(;.4),(5.5) has In the domain G the continuous solutlon 



269 

u(t), 8(t), u(t) , v(t) whiah extend6 to the boundarlce or the domain. An 

analogous conclusion IO valid also in those cares In which only one or the 
control0 u or v Is determIned by Bquatlone (5.4) or (5.5), and the other 
control la chosen In the form or an expllalt continuous function of time. 
But that raeans that the follculng rtateaent I.6 va.lld. 

Theorem 5.1. The permIrsIble oontrolr u” (5.4) and u” (5.5) 

In the domain a (2.5) close the system (1.1),(4.2) by a dlrfercntlal reed- 
baok loop. 

6, Let us now consider the problem of the optimum of the oontrols u” 
(5.4) and 19 (5.5) in the tmme of the orIgIna problem (1.1),(1.4) of the 
minimax time elapsing berore the encounter. 

Nrst of all, it ann be shown, an in Section 2, that when both partners 
follow tha rules (5.4) and (5.5) for t r T , the enaountcr of the motions 
~($1 and a(t) occurs at. the instant t = z + To [g (z) - z (z), p (z) - ‘v (z)], 
in other words the time T elapeIng before the encounter Is equal to 
zOcx(s), C(T)] for any initial position X(T)-Y(T)--I(T) and C(S) - ~(1) - 
- V(T) * 0 , for which the time optimum aontrol problem (2.2),(2.3) hae the 
solution PC 0 . 

However, that case presents little Interest, since the most Intereating 
oaBe8 In the pursuit problems are those for which one oi’ the partners does 

not follow the standard behavior. 

Let UB ammme non that the control u Is always chosen in the form of 
the function (5.4), l.c. in agreement with the nule (2.4) and the control D 
la realized In the form of some continuous fun&Ion u(t) which aatisflea 
the conditions (1,O) and (4.1). We shall amme that the process Is con- 
sidered from the Instant t - T , and that the values of p(r), a(~), p(t), 
v(r) at that Instant are ouch, that the point x = t (z) = y (z)--Z(T), 

5 = 5 W = c1 +> - V .(Z) I8 in the domain 0 . It can be shown, that in 
that case the encounter of the motions y(t) and r(t) must occur not later 
than at the Instant t = z f T” [z (z), c (z)]. 

Let ua consider the variationa of V(t) = To [t (& ?E (c)l as a funotlon or 
time, Aa pointed out earlier In Section 5, the function 3o[x 
nuoua in the domain a , and, consequently the function Ir (t) = Is, 

] is contl- 
Iz W, 5 011 

varlea continuously with time along the continuous motions or the system 
0*11,(4 2). Let ue assume that at some Inetant t > 7 
motions (1.1),(4.2) have not yet left the domain G 

ror which the 
thke are such value8 

5 = 5 (t) = y (t) - z (t), 6 = 5 (t) = p (t) - v (t), for which the problem 

r(T) = mini [ [ II B+F-1(6)* i Ip de] = & for z* (1) I = -1 
0 

03.1) 

haa a solution 1 = 1, (t), T = To (t), eatlsfylng the condition 

UB*F-’ W*&J (t) II > 0 (6.2) 

, C , T I the function v(T) haa a positive derl- 
the theorem on 1mplIcIt iunctIon we deduoe, that 
differentiable In the neighborhood of the point 

Therefore, we can oalculate the derlvativs (AY(t)h+t):_, 



bulr of Equation8 (1.1) and (4.2) for u-u0 

B . simultaneously 
oalwlrted on the motions ( ), c(t) of 

x - x t , c - c(t), 11 

(6.4) 

rlnoe tho funotl 
4" 

P[x, c] lm an optlmum Llapunov function for (2.2), and 
tha tunotlon rdg t) la 8n optimum oontrol. The quantity 

hu a mialmum for U) II w?(t). Therefore Bqrutlons 

n 8T” 
lx 

aTo 
aZ. bik - 

wt”k VI 
aE,F=O (6.5) 

i=l * 
are l atlrfled. 

8ubrtltuting the value u" (5.4) in (6.3) and aeauming u I UD++ au where 
P* 1~ d totid 

t 
the equality (5.5) we get the folloulng eq&tion b; 

taking 6.4) ud .5) into oonsldcratlon: 

(6.6) 

sinoe there follows front (5.1) that W'/a c 0 when y(T) imreaaes. Thereby 
If &q!~o. the rtrlot lnequallty is satlef ed In (6.6). f 

lhus, the lnoquallty (6.6) is 8stirfied at the point x(t) = I/ (t) - z(t), 
t (t) = p (t) - v (t) 

If the value8 of ( 
L-lo(t) T-Pt '19 

) end c(t) oan be found such that the Bolutlon 
of the prblelnn (6.1) does not verify the condition 

(6.2), that ie for whioh the equality 

~~B'F-'(T)*lo(~) II = 0 

1s rrt%sfled, then the oaloulation of the derivative (dV”dt) becoma more 
dlffloult rinoe the theorem on the differentlablllty of the ~iab;llolt function 
roC To study the behavior of the function 
V(t !I’ 

c] oumot be umd 8ny more. 
ln the neQhborhoob of such points x - x(t) and C - C(t) we shall 

l sroolate with the ryptem (2.2) the auxlllary 6gatem 

dz;dt =.4x+ Bw t EES (6.7) 

for which c > 0 le a small parameter. Here E is 
the unit matrix and e is the ~-dimensional vector 
of the oorap~emanta.ry control. The problem of the 
limit time optimum control of the system (6.7) 

(2 (T) - 5 (z $- TE”) = 0, T,’ = minj 

with the constraints 00 
II+Wt s (01 II2 dt < 6' (~1 (6.8) 

Fig. 1 s 
7 
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has the aolutlon TSO.fs (r), c (*)I, &J?’ ftf, 82) (tf) for al% x I xfz 
C - c(l) OC the domain d C2.51, in which the pmbleiri (2,2),(2.3 has a rrolu- 
Mon. The function 
point n - x t) 

t 

T e .ft, P 
, C - &TI ti re the problem (6.7),[6,8) hm a Piaite eolu- A 

fs ditfurent%able iR the wighbo~~d of my 

tion T,” [r, ]>O, i.e. In any oasa , everywhere in the domln 0 . 
Furthermore, in the closed neighborhood of eaoh point x, C of 0 the 

following limit relations 

fim T,D (z+ <I= To (r, cl, lim WJSf (t) = wqo (t), iims,@)(1)=0 npa E-r0 (6.2) 

are aatiisffrd.unfformly, 

va (4 = T’,’ [z (t), S (t)f along the motion of the 8yoz $l.l), (1.4) for small 
time Intervals At B 0 , when 10 - u”- [DO+ 6~11, . The fundClan 
TEO = V, satisfies Bellmani equation 

mi”rWv8, (m, I W = (m, / W&_F.*L) =-i 

on the basis of the system (6.7). U&g this equation, the I&rlt oonbitiorm, 

in a manner slmllm- to that used above #ox- the &mt%opv tree (6.3) to 
(6.9), and estimating the derivative (fl I de),_, r-ii t(t)<;t-!- At 

(6.6) ), we get the inequality 

V (t -I- Aht) - V (t) Q - At (1 -t x ltav II2 - 0 (8)) (6. IO) 

where I( s 0 is a Qonstant and the symbol O(t) denotes an lnfinitasimally 
small value for t + 0 * 

prom (6.10) there ~ollowa that for u L 80, the inequality 

(6.11) 

ie satlstlied for any oontrol v(t) . Here the symbol sup (fl/dt)&, denotea 
the highest ri 
the point n(t Y 

t-hand eide value of a derivative of the f’unotion y(t) at 
, c(t) . 

Thus, we come to the conclueion, that for u I uo and any izhoioa oi the 
control v(t) (1.41, the rslequality (6.11) 18 8atiEfied for all values 

for which the motion 8 (tl = y ft) - 2 (b) 5 (t) = P 01 - v t 
%‘tie’system (1.1),(4,2) atill remaina in the dbmain 17 , 

rp 

Mlequalitiee 
determlnad by the 

P (t) - y (t) > 09 c1 (1) > 0, y (t) > 0, 2” 1% Cl < = (6 12) 

where the Punotion v(t) = ?‘“[x(t),S(t)] 
tions of t . 

ohanges continuously with the varia- 

In the donaln 0 (2.5) the iunotion Zfx, 
where, except on the ax&a r - 0 . The leve E 

I is posftivs deiinlte every- 
surfaoaa T”lx,~] I comt > 0 

in the epace fx,c) are aaries the lnteraeotlon ot whioh by surfaosa 
C I oonst z 0 are ellipses ZPlg.1). 

But In such a ca8e the inequalitlea (6.6) and (6.11) mean that the motions 
of the syetem (1.1),(4.2) for u - u” (5.4) and at any instant of Mme tz 7) 
a6 long a8 sucrh motions remnln in the domain d lntesaeot the surfaoes 
F[x,C] - rronet - u in the dlreotlon of deoreasing of @ 2.8, fFODl tfis 
outside to the insi 

2 (t) -- y (0 .- z (tf, 6 Y tj 
It follow8 that for t r T 

= p 0) - 
the &Ion 

V (if remains in the dom8in D a5 lo 
IlSli > 0 l It follow8 that, by Virtue of (6.6) and (6,11), the inequal ty 9 a8 

z + T” [a: (~1, 5 (z)l Z r + To 12 (0, 5 !dl (6.13) 

ie aatlsfled for all t z 7 , a8 long as ljx(t)/) > 0 , 

dime f’or all 
that for u - f,P 

(~~~~ 0 , we have 29 I< ] >,O 
the equality ~($7 * 0 

it follows from (6 13) 
0; in other word8 the ‘enaoun- 

ter of’ the motion8 ‘y t) and r(f) oaWr8 no later than the instant 

t = T + T” [z (t), 6 (711. 

Thue the following ntatetnent ir valid, 

Theorem 6.1, tit the point S(T) l Y(T) - I(T), C(T) v~c(t)-v(r) 
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be In the domain a (2.5), and let ue aoeume that for t z T the control 
u - u(t) Is alWay chosen in agreement with the equality (5.4). Then, for 
any continuous control v = u(t) , constrained by the relation (4.1), the 
encounter of the motion.8 u(t) and r(t) will occur no later than at the 
instant 

t = z+T”[r (z), 5 ($1 
We shall notice that if the control u(t) diffe.res from the optimum con- 

trol v”(t) (5.5) for a set of values of t of the poeltlve norm, on the 
interval z < t < z + T” [SC (z), 5 ($1 then for u - u”(t) (5.4) the 
encounter of the motion6 v(t) and r(t) oocura earlier than 
t = z -i- 2’” [z (z), 5 (41, 8 1 nce ln suoh a aaae for values t < T +P[x(T), C( 7) J, 
(6.13) yields a etrlct inequal,lty of the type 

T 4 T” Ix (z), 5 (-c)l > t + T” [z (t), t; @)I -I- 8. 

The theorem 6.1 ahowe that the control ~0, determined by the equality 
(6.4) Is optimum In the given uense for the traoklng motion v(t) (1.1). 
More precisely, from this theorem, and from the condltlon that for any con- 
trol u = u* , for a given choice of v - u*v/~ , the encounter of v(t) and 
z(t) doea not occur before t=r+p. We note that T” = minumaxv T = 
- Tg, uo. 

7. In thla section we shall consider the situation which arlaes when the 
pursued motion z(t) (1.1) 18 controlled by the condition (2.4). 

Thus, we shall a~mamc that at the moment t - T we have the values 
x (T) = y (x) - z (I$, 5 (T) = p (T) - Y (T), which Ile ln the do&n 0 (2.5). 
Furthermore, for t 2 7 the control v 1s chosen equal to vb (5.5) at alI 

Instants at which the motion z(t) - y(t) -r(t) , C(t) - V(t) - v(t) rem+ainn 
ln the domain c and untll the enCOLUIter of the motlons v(t) and s(t) 
OCCurE . In such a case, and for any given instant of time, the InequalItY 

inf dT” [z(t), 6 (‘)I ( > + 
dt u--u0 

> _ 1 

/-- (7.1) 

la satlsfled. This Inequality 1s derived ln a manner similar to that used 
for deriving the lnequalltlea (6.6) and (6.11). In the inequality (7.1) the 

8ymboI inf (dT” / &)~_,o represents the lowest right-hand side value of the 
derivative of the function y (t) = To [z (t), 5 (t)], calculated along the 
motions of the system (1.1), (4.2) for u - v” (5.5). Integrating the lnequsl- 
lty (7.1) with respect to time for all the instants of time for which the 
motion x(t), c(t) (1.1),(4.2) still remaina In the domain C and s(t)f 0, 
we get the inequality 

t - T > To [z (T), 5 @)I - T” Lx (t), 5 @)I (7.2) 

However, for further conelderatlons In this section, unlike in Section 6, 
we mu& take into account thg new clrcumBtance@, which complicate the eolu- 
tlon of the pursuit problem. In the case u I uo (5.4), considered In Sec- 
tion 6, the lnequalltlee (6.6),(6.11) guarantee the conaervatlon of the 
motion x (1) = y (t) - z (t), g (t) = p (t) - V(t) In the domain G (2.5) tlII 
the encounter of the motions v(t) and z(t) . On the contrary here, the 



motion x(t), C(t) for D l v0 ($ ) and u # I@ (t ) cm reaoh the boundaries 

of the domain II , before the encounter of v(t) and r(t) 

When the motion x(t) C(t) touohes the boundary 
5 0 at borne instant of ti& t A 6 ) one of the follow- 

lng relations 
lim 1)~ (t) - v (t)] = 0 (7.3) 

lim To Is (t), p (t) - v (t)] = 00 (7.4) 
lim p (1) = 0 (7.5) 

muat be satisfied when 1-+6-O. If the boundary 
conditions (7.3) and (7.5) are satl.efied, where at 
t=6, then for t > 6 the two motlons 

($1 and 5 \?)%I% behave freely lnde 

Fig. 2 [he actlon’of the controls u(t) knd P 
endently from 

v t) 
reoourcea of which, aaoordlng to (7.3) and f7%j are 
exhausted at the instant t=tj. But under such con- 

ditions the motions v(t) an4 N(t) do not encounter at all. ff at the 
moment t = 6 the boundary condition (7.5) is the only one satlafled, and 
2 (6) 0,then for t>fi It Is always poaelble to conalder the control v(t) 
such ? hat the encounter of y(t) and I 18 unrealizable (for this, it 16 
sufficient to ae13ume v(t) * 0 for t>6). 

Thue., the control I( = u(t) , for which (7.5 occur8 at the Instant t = 6 
but for which the encounter of the motions t/(t an4 r(t) doea not occur, 
Is not profitable for the pursu%ng object, and In the future we shall not 
consider such cases. 

In the Case In which the reletlone (7. 
the encounter of the motions v(t) and 

) or (7.4) are satlefied before 
$) but the relation (7.5 Is not 

satlsfled, an even more confused situation occurs, where the rule t 2.4) can- 
not be use4 In order to control by means of the motions (l.l), since then, 
the motion (1.1),(4.2) goes out of the domain a In which thla rule le 
meaningful, 

An analogoue eltuation arises In those cases In which, right from the 
beginning of the proce88, quantities z (z) = y (z) - z (z), [ (z) = p (2) - v (T). 
which do not belong to the domain o are obtained Sor t - T . A comprehen- 
alve 4lscusalon of that case goes out of the frame of the present work. 

We ehall aeawne that the motion z (t) = y (t) - z (t), 5 (i) = ~1 (t) - v (f) 
does not leave the domain c: for all t 2 7 before the encounter of the 

Points v(t) and r(t) . However, even In such a case, It is not possible 
to conclude from the lnequalltlee (7.1) and (7.2) that the encounter of g(t) 
and x(t) will not occur earlier than at the Instant t=7+TO[r(7), C(T)). 
Consequently, although the functions I”[r,CJ , u"lx,{J and vO[_~,c] satisfy 
Bellman’s equation 

min, mar;, 
( 
dT”\ 

mu, u 
= maxv min U[zjU, u = (giU., u. = - 1 (7.6) 

In the domain a , even when the motions r(t) , c(t) do not leave that do- 
main, the value 30 and the pair of controls ~0, v” do not have a correeponb- 
Ing meaning of ma& mln, 2’ and a saddle point (~0 ,vO ) for the game [ 83 which 
correspond8 to the given pursuit problem. The conclusion 1s such that for 
x(t) - 0 the quantity PCx(t), c(t)] can avoid going to zero, If r(t) - 0 
(see Plg.2). 

Such a situation occurs for instance In the following almple problem. 

Example 7.1. 
the PIrat order equationa 

We shall consider the systems (1.1) described by 



dy ! dt = u, dz / dt = u (7.7) 
where y, I, u and v are scalars. 
of the quantities 

In agreement with (4.2) the varlatlone 

p’(~)=~II.(i)dt, 
00 

v2 (T) = 
s 

~2 (t) dt 
5 z 

are described by Equations 

4 u2 dv US 

x=--jp, 
-=-- 

dt 2v 
In thla case, the tlyatem (2.2) becomes 

dx i dt = w (x-g-z,w=u-vu) 

(7.8) 

(7.9) 

Let 7<0. We shall try to choose the 
- I(T) and C(T) - P(T) - w(t) and the 
for 411 time 7 s t < 0, along the motion 
v - v(t) (5.5), the condition 

la satisfied, and the encounter (t) - r(t) occur8 for t - 0 
to aatlafy the condition6 (7.10) !t Is sufficient, aacordlng to*(5?)S)%% 
the condition 

5 (1) = P (0 - v (1) = z (I) > 0 (7.14’ 

be satisfied since la the given case we have f(t) - 1 In (5.1). Control 
uTO(t), calculated according to (5.2) 1s 

wso (t) = - 2 (z) (7.12) 

and consequently, In agreement with (5.5), (7.11) and (7.12) we have the con- 
dition 

v0 (t, =. - V (1) (7.13) 

From (7.8) and (7.13), chooL’ng v(0) = 1 , we get 

v (t) = e%’ (7.14) 

Then, from (7.9),(7.11),(7.13) and (7.14) it follows 

p (t) = f?-l’S 1 + 3 (t), u (t) = - c-“‘~ + dx / dt (7.15) 

NOW the function r(t) Is determined from the dlfferentlal equation 
obtained by substituting (7.15) In the first equation (7.8); this equation 
haa the form -p 

dx/dt = - x (t) - 1/ x (t) e-2’sr + x2 (t) (7.16) 

For the condition x(0) = 0 , Equation (7.16) can be eolved In the form 
of the series 

2’ (t) = IW + cp (Q, cp (2) = u# + a4t4 + . , . (7.17) 

whereupon we get for the function o(t) , the differential equation 

dg / dl == f It, cpl 

which Ne a holomorphic right-hand side in the neighborhood of the point 
t=o,r-0. Thur , accord1 
convergence of the series ( 

the function x( t 
.17 for sufflalently small values of t . RIP 7 

to Cauchy’s theorem [lOI there follows the 

thermore, (7.17) Is porltlve for small value8 of t . 
Thus, for sufficiently emall valuer of t(T s t < 0) we design the control 

(7.15) 
u(f) E - e-'jz t + W + @ 1 dt 

Buch, that although the control (($)I Is chosen for all 
i E IT, 0) alwaye ln hgreement with , I.e. ln the form (5.51, where 
P~~og~, 5 WI= 1 (1-f t <Oh yet the encounter of the 

!(I!] and r(t) becomes real for Consequently, In the given 
example, he time T elapsibg before the encounter, for v - vQ, 16 8&hr 

than T’[X(T), C(T)] - 
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the 8tafeUtent glVOn above, that In general, the quan- 
not a minllaax of the time elapsing before the tncoun- 
and that the pair of control8 rP (5.4) and u” (5.5) 

dots mot repreccnt a saddle point t9] of the corresponding BanE even If we 
limit urselves to the aontrolr and u whiah do not move the motions 
(1.1),74,2) out of the domain a y2.5). 

More spcalfloally, the cxaraple shows the poaslblllty of such varlatlons 
of the control u from u”, for whloh, although the second motion In (1.1) 
rellains controlled aoaordIng to (2.4 for all t z 7 , the enaounter ocour8 
earlier than at the in&ant t=Tblv p(r)-v(T)]+T . Howev~ itcan 
occur lnalae the aomeln 0 only at the condition that C(t)- p(t)-v(tl -0, 
but then lim To It (l), 5 (t)] # 0. 

The following statement Is valid, 

Theorem 7.1. Let UB tzumume that at the Instant t I 7 we have 

the quantltlcs 2 (T) = y (%) - z (T), F, (r) = p (2) - v (z), which are 
located in the domain 0 (2.5). If during the time t 

r f t <a < z + T” [z (4, 5 (7)) (7.18) 

the motion 5 (t) = y (t) - 2 (t), 5 (i) = p (i!) - V (t) remain6 In the domain 

c # where the Inequality C (t ) > o (C > 0 is a constant), la satisfied, 

and the control u - u(t) for t z T le chosen In agreement with the cqua- 

lity (5.5), then the encounter of the rnotlona v(t) and a(t) cannot occur 

at the Instant t = 6 

Proof The quantities 7“ ]r 
ously along the motion of the system 

1, 5 (t) and C(t) change contlnu- 
4.2). Consequently, under the 

condltlona of the theorem the Incquallty <(+)>,&>O In satisfied at the 
Instant t = 6 If, In spite of the etatemcnt of the theorem, we take 2 (6) = 0, 
we must have 

lim 3’ [z (t), 5 (t)] = 0 fat t 4 6 - 0 (7.19) 

since the quantity 2’ [z, 5 (6)] 3.6 continuous and poaltlve definite In x 
for g (6) > E But the relationc (7.18),(7.19) and (7.2) arc cdntradictory; 
this contradiction proves the theorem. 

N. o t e Prom the proof of Theorem 7.1. It.cap be Been that for 
6 <T -i- 3' [;(T) 6 (z)] the condition lim 2’ [z(t), c(t)] = 0 when t 4 6 - 0 
cannot be satisflcd If the point s(t),-<(t) doea not leave the domaIn 0 ,’ 
end the equality u - u0 (t) Is always eatlefled. 

8, The theorems 6.1 and 7.1 show that the choice of the control 
u = v” Is.(t), 5 (t)] (5.5) for the second motion (1.1) wlll be expedient In 

the domain 0 , at least until g, @) = p (t) -v(t)> 8, where c -1s some 
positive number arbitrarily chosen beforehand. 

At the same the, the example 7.1 showa that for 5 (t) = p (t) - v (tj - 0, 
but lim To [z (t), p (t) - v (t)] # 0 (t -_6 - 0), the motion t(t), cm 
be sometimes caught-up by the motion g(t), (for t =a) before the Instant 

t = 7 i- T” 15 (T). 5 (~)l, if this motion a(t) Is also rigorously controlled 
according to (2.4) when c(t) < c , Thus, a8 far as the motion 8(t) Is con- 

cerned when 5 P) = IL @) - v W -c 0 for T" Is (t), 5 (t)l > B > 0 it 
would be worth while changing this motion to another control rule distinct 
from the rule (5.5). 

The COnctruCtIOn of such an OPtlmUi control method, which would be descrl- 
bed by the function u = 0 [P W, 2 (0, P H, y (t)] ana which would take into 
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account the lndlcated clrcumatances la a different complicated problem which 

Is beyond the acopc of thie paper. 

However, if one ia to accept the posslblllty of additional Information on 

the motion k(t) , then we can Indicate a series of simple and rather expedl- 

ent control methods by the motion s(t). One such method follows. 

We ehall consider the problem of the pursuit of the second of the motions 

in (1.1) by the first, under condition8 whLch facilitate the problem of the 

control by the pursued motion s(t) . We shall assume, a6 In the previous 

problem, that In the device generating the control u , the realized quanti- 

tlee v(t), 8(t), cl(t), v(t) can be taken into account at any Instant t . 
However, we shall now aaaume, that In the device generating the control v , 
one can take Into account, together with those value0 alao the quantity 

u(t - q), where q z 0 Is a small constant quantity. In other worda, we 

shall accept the possibility of choosing the control v(t) In the form 

Then we shall take for u(t) and v(t) some piece-wise COnt(:lUOus reallza- 

tlona. In such a CaBe, In the altuatlons pointed out In this section, we 

can a88ume 
21 (t> = u (t - Tj) (8.1) 

If the delay q It3 a sufficiently small quantity. 

The control v(t) (8.1) has the following property. If at the Instant 

t-7 the quantltlee Y(T) and C(T) are obtained In the domain c , then, 

for a sufficiently small 11 > 0 , the control v(t) (8.1) guarantees the 

encounter of the motions p(t) arid r(t) not earlier than at the Instant 

t > z -I- T” [z (T), 5 ($1 --6*, where 13 * Is an arbitrarily small positive 

number chosen beforehand. If at the Initial Instant t - 7 we have quantl- 

ties ~(7) and C(T) outside the domain G (2.5), then for a SUfflClentlY 

small q>o, the control v(t) (8.1) guarantees that the encounter of the 

motions v(t) and a(t) will not occur earlier than at t > T + Et*, where 8+ 

Is an arbitrary large positive number chosen beforehand. We shall not carry 

out the Investigation of those properties. 

Taking Theorems 6.1 and 7.1 Into account, and also the properties of the 

control u(t) (8.1), we get the following rule for choosing the control v 

in an expedient manner. Let UB choose Bon-e small numbers cl> 0 and E*>O. 

If at the Instant t we have values x(t)- y(t)--r(t) and C(t)-cl(t)- v(t) 
satisfying the inequalities 

5 0) > El, To [z (4, L (01 < 03 @4 

then, the control v Is chosen according to (5.5). If at the instant t 

one of the condltlons (8.2) does not hold, where T” [z (t),, 5 (t)] > Ez, then 
the control v Is chosen ac&ording to (8.1). 

Then, In order to avoid the appearance of slipping modes In the case of 
changes of the controls v (5.5) and (8.1) along the motion 

we can Introduce a small hysteresis In the controls (5.5),(8.1 . More f 
l.l), 

9 It Is possible to change fron the control (5.5) to the control 
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(8.1) when the Inequalities 

ts It) > Ey’, T” Is I& s 0~1 < 00 (8.3) 

do not hold anymom, and to change from the control (8,l) to the control 
(5.5) when the inequalities 

s (t) >, cl”‘. To It ‘0, 5 (01 6 0 (8.4) 

are satisfied, where 8~~ @) > Ef) > 0 and 8 is a sufficiently large number. 

9. To conclude this paper we shall discuss the relation between the rule 
(2.4) used for choosing the controls u - IP (5.4) and t, = u” (5.5) anb the 
aiming rule formulated in [l] and based on guiding the motlopa a/(C) and 

r(t) to Che mint so(t) , intersection of the boundaries (see Fig.3) of the 
domains of accessibility H(*)[y (i), p (i), t + T,l and %‘~[Z (t), 2, (t), t + T,I 

@atr, 

af the procesbes v(t) and r(t) at the 

instant t $ T; Iy (t), 2 (t), p (% Y (t)J 
at which the process v(t) takes over the 

process 8(t) (see Cll, pagee 7 to 9). 

Fig. 3 

For definiteness, we shall only con- 

slder here, as was done earlier in !kc- 
tions 6 to 8, the ease of boundaries (1.2) w 

8% of the type (1.4). We shall show that 
the two rules ooinalde with one another. 

First of all we shall notice that the 

is valfd, where both quantities have a meaning Pm the ssme values of 

x(‘6) ‘Y C-c) - 2 WV 5 W = P (0 - y (2) 
In fact, let us assume that for some JC(T),~(T) the quantity P[,E(T), 

C(T)] ha6 a meaning. This means that there exist8 a control wTo (f), con- 
&rained by the condition 

P r,t+T* fWtO @)I < 6 @I WI 
and which brings the system in o the state x(? + !P) - 0 

v t_) P 
But in such a 

case, for any given oontrol , constrained by the concktion 

b,++TO [.(t)l=iiSTlily(f)i~dl~~~(~) (9.3) 

the control + 

a (t) 
astiefiea the condition 

= z1 @I -I- WfO (Q (9.41 

and guax-antees the enaounter of the motions V(t) and r(t) at the instant 
t-74-p a And this meane that the domsfn of aooesaibility 

~~~~~~~~~ ~~~~,‘~ Jh8+@ 

N[, (z), 
t&on q(e) is in the domain of acceaslbillty 
of the motion p(t ) Consequently, for those values 

of J?(T) and C(T) the quantW l-0 iv (T), z (;t, p (t)* v (rfl has a m-nix&and 
the ineclualitu 

Now let us assume the oppoalte, that is, for realleed valuea of P(T) , 



AT’) I \(T) and V(T) , the quantity T, has a meuring, We rrhall aonrider 
the pro lem of the oontrol by the syrtem (2.2) from the Point 3: - X(T) to 
the point X(T + T,,,) - 0 with the smallest poerible norm 

(9.7) 

Radar oonditionr of’ full uont~a~~~b~l~ty ot the oyatem (2.2) thie problem 
h66 a solution. If in (9.7) we h8ve 

6” G P (4 - v (z) (9.8) 

it mara that PST and a6 a oonscquenee of the inequality (9.6) the equi- 
valcnae of the qurnt~ties T, and To will be proved. 

Let UE l sume now that in (g-7) we had 

5” > c” (7) - v (z) (9.9) 

Let u),(t)” be 6n optimum control solving the problem of the control 
2 = e 121, z (‘c t_ g’,,f = 0 for the system (2.2) with the conaltion (9.7). Then 

(9.10) 

OF 
+ 

'-f-T, 

-r{Tf)= 
f 

F (T - t) Bw, It)” dt (9Ai) 
. 

Lat u8 ohoose the control . It satisfies the con- 
dition 

*+'J', 

II eo w lr” dt 1 
% --v(.t’) (9.12) 

Conse uently, from the meenlng of the quantity TO , we must ifnd 6 con- 
trol u, ? $1 vhf& satirfits the aonditfon 

++T,, 

[ s II uo (t) IP q” r< p w (9.13) 

5 

and guarantees the encounter of the motion6 p(t) 6nd t(t) 8t th0 instant 

fI&‘&&&6 
Therefore the aontrolu u, (t;) 6rkd u, (t) must 6atful"Jr 6n squa- 

to the equality (9.11) 
r+To 

-Z(T) - 
\ 

F (T - t) B Iuo (t) - ho] a (9.14) 
; 

Taking the value6 I and the equality (9.11) we get from (9.14) Eque- 
tlon 

-P+C:cr) r(l)=‘~F(~-1)Byg(lfdl (9.15) 
t 

whioh 
i 

8aa that the oontrol UI I: u,(t) 601~66 the problem of changing the 
eystem 2.2) from the state z = ([co + Y(T)]/ y)s(t! at the instant t I +T 
tothastate x(~+T~)-o. 
t@(t) * 

The smallest n&m p”,[wl of the control 
uhkh solves such a problem aceordirtg to (9.7) a!& (9.9) is the fol- 

lowing: 

P:,s+T, (9.16) 

But the inequ6lity (9.16) controdfcts the assumption that PV IUo] <P (a). 
Thi6 contradiction eliminates the inequality (9.9), and this, accordfng to 
the pravious reasoning, shows the equlvalenca of the quantities TV and T,, 
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We shall show now that the rule (2.4) for choosing the 

and V(v) represents the ain@ of the motlona k(t) and 

<O(r) at the instant t = I + P= T + T,. 
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control5 u0 (T) 

r(t) at the point 

In fact, the control u (t) = w+’ (t) p (z): (p (z) -Y (2)) brings the 
motion v(t) to the boundary of the domain HII) [y (z), p (z), T + To], at 

the Instant t - T + TO, since the control wrQ (t) IS optimum for the problem 

(2.1) to (2.3). 

Similarly, the control U (t> = Wr’ (t)V (7) : (p (T) -V (T)) bring8 the 

motion a(t) to the boundary of the domain H(‘) [z (z), v (z), z + To] at 
the instant t = T + TO. 

Furthermore, those controls realize the encounter of the motion8 k(t) 

and r(t)atthetlme t-7+310. Consequently, the controls 

WT” 6) P w 
u = lb0 = p (T)-v(r) ’ 

WP 6) v w 
v = u” = I” (T) - V(T) 

(9.17) 

aim the motions k(t) and r(t) at the single point fO(v) where the bound- 

aries of the domains H(l) and H(a), intersect. These boundaries appear a6 

similar figures, dimension8 of which are in a ratio u/v . This proves our 

statement on the coincidence of the rules (2.4) and the rule related to the 

aiming at the point q” (T) of [ 13. Taking Into account the results formu- 

lated In the previous sections, we come to the following conclwlon. 

If for t - 7 there were quantities ~(7) , z(7) and u(r) > V(T) , for 

which there exists a finite lnatant t = r + To at which the process v(t) 

(1.1) takes over the Process t(t) (l.l), and If for t z 7 the control 

u(t) IS alWay chosen from the conditiona of aiming the motion v(t) at the 

point q” (t ) , then, in the pursuit procea8, the system, for all times before 

the encounter, la closed by a differential feedback loop, and the encounter 

occurs not later than for t - 7 + To. 

Slmllarly, if u(t) alms the motion a(t) at the point q”(t) , then the 
encounter occurs for t = T + To [y (T)J ($,P W,vWI. 

If, however, the control u(t) does not follo)r the law which aims at the 

point $0 (t) , then the choice of the control u(t) from the condltlona alm- 

ing the motion r(t) at the point co(t) at all times for t 2 t , does not 

guarantee a time leas than T0 [y (T), 2 (rt.), p (a), V (%)I, elapsing before 
the encounter, even If we limit ourselves to such controls u(t) , which for 

t 2 r , will keep finite values of To [y (t), z (t), p (t), v (t)]. 

However, the combined control v(t), which for 2’0 [v (t), z(t), p (t), 

v(t)]<0 andp(t)-v(t)>q>o I a chosen from the condltlons of alm- 

ing at the point co(t) , and for To [y (t), 2 (t), p (4, ?I (t)] > 8 is chosen 
equal to u(t - q) for sufficiently small n > 0 , guarantee8 an encounter 
not earlier than at the moment f = r t To ty (z), z (r), p (‘t), v (+I - 6*, 
where fi* Is an arbitrary positive number chosen beforehand (see page a6). 

Finally, let us describe a computational scheme, on the baa18 of which 
are constructed the controls ~0 or u” determined by the rule (2.4). This 



scheme follow5 from the rule [2], which describes the construction of an 

optimum control wo7 (t), Which solves the problem (2.2),(2.3) of the limit 

time-optmum response. In agreement with this rule we must choose a func- 

tional space {h (t)}tT,Bl (T -ss t < 6) with the norm x7,& 116 (t)], for whhh 

the wantW p,,@ IW (1) 1, which bounds the control resources, represents the 

norm of the linear functional 
3 

‘p, [/&I - \ W* (t) 11 (t) dt (9.28) 
., t 

determined on the functions 

conditional minimum 
h.(t) l Then, we must solve the problem of the 

The number 6”, for which 

Y(fi”--) = [/L(T) -+)1-i== c(T)-’ 

determines the quantity T” [s (T), 5 (T)] = 8’ -- z. 

The control wo7 (t) 1s determined from the maximum conditions 

fj” 

s 
wrO (t)* It” (t) dt = mas, for p,, oo [w(t)] = 5 (T) 

(9.20) 

(9.21) 

After the determlnatlon of wo7 (‘c) the values of uo (T) and u” (7) are 

determined according to the relations (2.*). 

Thus, if one of the partners stays with the rules (2.4), the procedure 

for the computation of the control uO(t) (or S(t)) at actual instants 

t z 7 results In the continuous correction of the quantities 6” (t) and of 

the functions tit(t) In agreement with Equation (9.20) and relstlon (9.21). 
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