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This paper is concerned with the problem [1] of the minimax time elapsing
before the encounter of two linearly controlled objects described by identi-
cal equations. Purthermore, it is assumed that constraints on the control-
ling forces allow only continuous motions of the objects.

1. Let us consider the problem [1] on the minimax time 7T elapsing before
the encounter of the pursuing (y(¢)) and persued (z{t)) motions, which are
described respectively by Equations

dy [ dt = Ay + Bu, dz [ dt = Az Bv (1.1)

Here y , z are the n~-dimensional vectors of the phase coordinates of the
controlled objJects; u, v are the r~dimensional vectors of the controlling
forces; 4 , R are constant matrices describing the system. All the vec-
tors conslidered are treated as column vectors. An asterisk # represents a
transposition. In agreement with [1], it 1s assumed that the control
resources u{t) and ov{#) which can be used for ¢ > r at each instant of
time 1 , are constrained by the condition

pr lu )l < p (v), pr [v ()] < v (7) (1.2)

We shall assume, that for any § > T the quantity p. [ (f)] » correspond-
ing to functions w»(t) satisfying the condition wu(t) = O when £ >, can
be interpreted as the norm 0. g [w (f)] of the linear functional @, [R ()1,
generated by the funetion p{t) on the adequate normed space {A{t)} of the
functions h (f) (vt <<t <(9®) (see, for instance, a similar case in [2],

P . &6 and 7). Thus we shall limit ourselves to conditions (1.2) which eli-
minate discintinuities of v(¢) and 2(t) .

The above conditions are satisfied for instance by constraints (1.2) of
the form

fu @<, fin () <V u > v == const) 1.3
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or the conditions

% /s ry s
Siwora]" <ww. [(ope]"<vo (1.4
but are not satigfied by constraints of im;ulsive type
oo [o¢]
Viewae<pm, (pporacyo (1.5)

since the constraints (1.5} allow controls wu(t) and p(¢) which can include
instantaneous &-functions : &§(¢ — ts) , which would lead to discontinuities
of the phase vectors y(¢z) and z(z) . (In (1.3) to (1.5) and further on,
the symbol Iy|| represents the Euclidian norm of the vector i ).

It is assumed, that a variation in the quantities u(r) and v(r) with
varlations of the time <+ 18 obtained by a consumption of resources. For
instance, if for vx< ¢<{ the controls u,¥t) and v,(¢t) were obtained, then

in (1.4 .
8
spr=p@)—p ) =—{luopa,  sv=v®—vo=—lnopa

We shall consider the problem [1] of the minimax of time T elapsing
before the encounter of the motions y(t), 2(¢t} . It is assumed that the
goal of the pursuit is reached at the instant of encounter ¢ =1 + T for
which all the coordinates y,(¢) and z,(t) (£ = 1,..., n) coincide. Thus,
we have a problem of min,max, I’ = max,min, I' with the condition
v(1 + T) = 2(r + T) and the assumption that the controls u and » at any
instant ¢ = r are obtained according to the feedback principle for reali-
zable values of ¥ (1), z (t), p (¢v), v (T), i.e. in the form of functions
u [y (v), z (), w (v (T)] and v [y (1), z (1), w (1, v (1)l

We shall assume that the systems (1.1) are fully controllable [3].

The assumption of full controllability does not limit the generality. In
fact, if the systems are not fully controllable, the question of the encoun-
ter of the motions (1.1) has a meaning only when the difference x{r)=yp(r)—
— z{7) of the vectors y(r) and =z(r) belongs to the subspace r , generated
by the column vectors of the matrix {B, AB, ..., A®'B}.

Otherwise, it would not be possible to find controls ust) and v t)

(¢ 2 1) which would yield an encounter of the motions y{(t) and@ z(¢) at a
finite value of time & >t . The validity of this statement results from
the general theory of control by linear objects (see, for instance [2 and 31).
In the space y , the systems (1.1) are fully controllable. There follows,
that when the systems(1.1) are not fully controliable in the original p-dimen-
sional phase space of the vectors y and z , the problem of the encounter
of the motions y(¢t) and z(¢) can be reduced to the problem of the encounter
of those motions in a phase space y of lower order, where those systems

are fully controllable.

2. In the general case the solution of the conflicting problem of the
minimax time occurring before the encounter of the two motions (and even the
statement of the problem) meets some serious difficulties (see [1 and 4]).
Thus, for a particular range of problems in the particular case described
in Section 1, it is possible to formulate a simple rule determinling a ration-
al method for choosing the controls uw and » . This rule has a simple
intuitive meaning formulated as follows.
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We shall compare the problem of pursuit (1.1) with the following problem
of optimum quick response [5 and 6]. Find the control p(t) constrained by

the condition P [w (t)] < c (T) (21)
and transferring the system

dz |dt = Az Bw (2.2)
from the position x = x(v) to the position x(v + T} = O 1in the smallest
possible time T = T°, i.e. it is necessary to determine

T°=min for z(x+T7T°)=0, P, rope W1 <L (T) (2.3)

ir T° [z (1), {(x)] and w.° (f) represent the solution of this problem,
then for the original pursult problem we take
T=T°[y()-—-z(r), #(t)—v(r)] = min, max, 7,
and we determine the optimum control with the equations
- o, v(ey] = T OBE
u [y( )’ 2(1)7 p’( ),‘V( ) —p.(T)—V(T)
Ly, 2 (9, 1 (0, v ()] = L)
Ly (@, 200, (D VO = G S
Here it is assumed that u(+) > v(r) , for the realizable values of
z(t) =y (1) —z2(1), T (7) =p (1) — v (1) there exists a finite solution
T° [z (1), § (t)] of the problem of quick response (2.2),(2.3). Furthermore,
we shall denote by the symhol ¢ the domain

>0, T° [z, L1 << o0 (2.9)
of the space {x, {} in which the problem (2.2),(2.3) has a solution for

tM=2¢C z(v)==

We shall illustrate the meaning of the formulated rule with the example
of pursuit problem for which conditions (1.2) of the type (1.3) are present.
Furthermore, we shall 1imit ourselves to the simplest case for which r =n
and the matrix © 1s nonsingular, i.e. the case in which the dimensions of
the vectors p, z and u, v coincide. The difference x{z) = yp(t) — 2(t)
satisfies (2.2) where () = uét; - Ustg . Let us assume that at some
= v

(2.4)

instant z = 1 the quantity »x(~r v) — z(1) has been realized, and that
the values ¢ =y — v , x = x(1} are in the domain ¢ (2.5). Here ¢( 1is

a constant. If for ¢ = 71 , both controls uy and v are in agreement with
the equality (2.4) at every instant before the ercounter, 1.e. if

w(l) = ue () = ’:‘—_“)vl‘- : v (t) = v° (1) = ";L‘—_(_');V— (2.6)

then the conditions (1.3) will be fulfilled, and in Equation (2.2) for ¢z 7
we have w (t) = w.%(t). Then there follows from the meaning of w,°(? the
equality x(t) = 0, i.e. the encounter of the motions y(t) and =z(¢) will
occur for the first time for ;= v T°{z (1), ]

We shall assume now, that the control uv(¢) for ¢ = 7 is modified con-
tinuously until the encounter, according to Equation (2.6), and that the
control u(¢) is chosen arbitrarily, keeping in mind the constraint (1.3).
Tet us examine the function V[x]) = 7°[x,(] . This function is definite for
all » and { of the domain ¢ , positive definite in ¢ , differentiable
for » # 0 , and for the problem (2.2),(2.3) represents an optimum Liapunov
function [6], This last condition mean that the derivative ?dv/bt). of the
function fo&)] satisfies Bellman's equation [6 and 7] along the motion x(t)
of the system (2.2) when controlled by * 1»(t)

A avy (dV
mmw( =Tl M T)w- =—1 2.7
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Since
av
(‘a‘r)w = [grad V]* {4z + Bu] (2.8)

then from (1.3), (2.1) and (2.7) there follows [6]

. B* [grad V]
v () =—TB% [grad V]| (2.9)

Computing the derivative (g¥/dt). for x = u — v°(¢) , then one can check
the validity of the inequality
(dV
_d}“)u-v"> —t (2.10)

Integrating the inequality with respect to time for ¢ > v we get the
inequality
V@IV — (-9 =T[z(1), L] —(t~ 1) (2.11)

the right-hand side of which is positive for ¢ < 7 + 7¢. But this means
that for the choice &= »°[z(t),{] according to 32.6), the encounter of the

motions 7g(t) and 2z(t) , i.e. the equality x(¢) = O , cannot occur for

? < 7 + , because the equality y{x} = O must be satisfied for x =0
It has been impliritly assumed here that during the motion, the point
z(t) =y () --z2() does not leave the domain ¢ ) .

If the point x(¢) leaves the domain ¢ for some intervals of time, then
the rule (2.4) cannot be used during those intervals. However, by choosing
v(¢) arbitrarily (Jlo(z)ll = v) , in those intervals of time, we can find
that in such a case the encounter of v(¢) and 2(z) does not happen for
t< 14 T° [z (1), {], Af only the control of the motion z(¢) follows the rule
(2.4) in the domain ¢ .

On the contrary, if for ¢ 2> 1 it is assumed that u = u°(¢) (2.6), we
get the inequality (dV

T st 2.12)

from which there follows that the point x{t) = y(¢) — z{(t) does not leave
the domain ¢ before the encounter.

The integration of (2.12) yields the inequality
VizWI<VIz())—¢t—1=T°[z (), Ll—(—1) (2.13)

From the ineguality (2.13), there follows that for wu = uc(z) (2.6) the
encounter of y?t) and g(z) occurs not later than for ¢ = 1 + T°, since
for x # O we have V[x] > O .

Thus, the control (2.4) in the considered case, actually guarantees the
minimax of the time of the encounter. Here, that minimax colncides with the
maximum and the game [ 8] corresponding to the problem of pursuit has a saddle
point T°:=T . ,o. Consequently, the use of the general rule formulated above,
turns out to be Justified in the present case.

3. In the general case, a rigorous basis for the rule given in Section 2,
meets with serious difficultles. Furthermore, it is possible to have situa-
tions for which either the rule turns out to be wrong, or cannot be utllized
because for the realizable values of {r) = u(r) — v(r) and »(7)=y(7)—2(),
the problem (2.2),(2.3) does not have a finite solution fo[.fw), 5%1)].
However this does not affect the validity of the formulated rule, since 1t
can serve as an indicator for the choice of an optimum control u, and v,
for a rather large class of cases.

We shall point out two difficulties which are met when substantiatinr the
formulated rule. For that purpose, we shall discuss, for lnstance, the pur-
suit problem in the case of multidimensional objects y(z) and z(¢) control-
led by scalar controls u and v which are restricted by the constraints
(1.3). It seems to be more difificult to make the proof following the cchemne
described in Section 2 than in the case r = r consldered in S=ction 2,
since the function MM x] = T[x, u — v} is not smooth any more. Because of
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the nonsmoothness of the function {x] , the derivation and use of relations
of the type (2.10) to (2.13) requires an additional analysis (see the analog-
ous case in the investigation of the problem of optimum control in [9]).
Another serious case which complicates the investigation is the question of
the class of the controls uf(¢) and wv(¢) which can be realized in the system
(1.1) when one of the partners follows the rule (2.4) and the other diverges
from 1t. (If both partneras follow the rules {2.%), the class of functions
w(t) and v°(¢) (2.6) is determined by the class of elements p(¢) in the
runc§10n31 space {w(t)] which has the norm p, ete (@ (1) (see above page
263 ). ’
, In the example, considered in [1] (page 12), it is shown that in the pur-
sult problem which follows the rule” u = u°(¢) in agreement with (2.6}, in
the case of .the constraint (1.3) for r < n {(there n = 2, r = 1) slipping
conditions can appear (there for 7z (!) = 0= »°(!)). Consequently, 1n such
cases, the statement of the pursuit problem must allow, in agreement with
the feedback principle, realizations of the controlling signals u(¢) and
v(t) of a more general nature than the class of elements (t) of the space
{w(z)} which has the norm p. lwl.

The conditions pointed out, as well as some other facts which are con-
sidered below in Sections 6 and 8 justify the expediency of the investigation
of the general rule formulated in Section 2 for different concrete classes
of the consatraints (1.2).

The purpose of the present paper is to investigate the rule (2.4) in the
case of constraints (1.2) of the form (1.4). This investigation conatitutes
the toplc of Sections 5 and 9,

4, Let us consider the pursuit problem formulated in Section 1. We shall
assume that the control resources are constrained by the conditions (1.4).

This means that, beginning from any instant of time = 1 , only the
controls u(¢t) and v(¢) limited by the constraints 1.&3 can be realized

in the systems (1.1); whereupon if the controls u,(t) and uv,(t) were real-
1zed for Tt ¢ , then

8 8
K2 (8)=p?(x) — S“ u, (t)|Pdt, VE(H)=v(r) — S e ()| at (4.1)
There follows that if ;t some instant ¢ , the functions wu(t) and o(¢)
are continuous, then T flu(2) [P dv [EXGY
dar T T T a =T Taw ‘ (4.2)

Let us specify the statement of the problem from the point of view of the
class of permissible realizations of u(¢) and wv(¢) . We shall say that the

control w=uly @), z@),p @, @] (4.3)
is permissidble if, for any arbitrary function uv{t) , satisfying (4.1), Equa-
tion (4.3) determines a continuous realization of wu(t) satisfying (%.1),
whereupon the realizations of y(t), #(t) and n(¢), v(¢t) are solutions of
the differential equations (1.1) and (%.2) (at least until the quantities
y(t), 2(¢t), u(s), v(¢t) remain in the domain in which the function (4.3) is
definite). In an analogous manner the permissible control

v=vly (), z(1), p (1), v (V] (4.4)
can be determined.

Let us mention finally that the permiasible controls (4.3) and (4.4) are
mutually permissible, if they generate continous realigations of the controls
u(t) and w»(t) , whereupon the realizations of y(¢t) , 2(¢) , u(t) and (¢)
satisfy the differentisl equations (1.1) and (4.2) (in the domain in which
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the functions (4.3) and (4.4) are definite). We shfll say that the mutually
permissible controls (4.3) and (4.4) close the system (1.1) with a differen-
tial feedback loop. Later on, we shall investigate the original pursuit
problem (1.1),(1.4) for controls (4.3) and (4.%) which close the system (1.1)
with a differential feedback loop.

8, We shall show in this section, that in the case of a constraint (1.4)
the rule (2.4) determines the permissible controls u (4.3) and v (4.4)
which close the system (1.1) by a differential feedback loop. The following
statement is valid.

Lemma 5.1 . In the neighborhood of each point x = x(r) and
¢ = C(r) > 0, in which the problem (2.2),(2.3) has a finite solution
7°[x,{] , the quantities 7°[x,(] and ,°(¢) are continuous in x and (.

Proof ., Inl6), 1t is shown, that the quantity 7°[x,{] is deter-
mined from Equation T

7(T)=minl[8||B*F" (t)*zuwz]:-g;- for o*l = —1 (5.1)
1]

The optimum control wT°(t) is determined by Equation
w® (1) = B¥F-1 (1)*1° 5.2)

in which (° is a vector proportional to the solution of the problem (5.1).
The vector 4° is determined from Equation

T
[S F-1(t) BB*F-1 (i)* d:] IP=—z (5.3)
0

the determinant of which -

A [S F1(t) BB*F- ()* dt]
[1]

18 different from zero for all T > O when the conditions of full control-
lability are met [3 and 6],

Here F-'(¢) 1s the inverse of the fundamental matrix F(¢) of the system
dx/kt = Ax . The function y(7) in the left-hand side of (5.1) increases
strictly with 7 , since the integrand of (5.1) can become zero when £t ¥ ©
only in separate points ¢ . Similarly, the quantity vy 1s continuous in
x . Thus, on the basis of a theorem on implicit functions, we conclude that
Equation {5.1) determines a function 7°[x,(] continuous in x and (

This proves the lemma.

From Lemma 5.1 there follows that the functions y° and »° determined by
Equations (2.4) are continuous in y{r) , #(r) , u(r) and v(r) of the open
domain G (2.5) of the space x =y — & , { =4 — v . Consequently, substi-

tuting the quantities we () p (0)
w=ut [y 1),z (), kO, VOl = S (5.4)
o w® (1) v (1)
v=2"ly(@), 20, 1O, YOl = T —var (5.5)

in Equations {1.1), one obtains a complete set of Equations (1.1),(4.2), the
right-hand sides of which are continuous in the domain ¢ . Therefore, the
system (1.1),(4.2),(5.4),(5.5) has in the domain G the continuous solution
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v(t), 2(¢), u(s), v(t) which extends to the boundarles of the domain. An
analogous conclusion is valid also in those cases in which only one of the
controls y or v is determined by Equations (5.%) or (5.5), and the other
control is chosen in the form of an explicit continucus function of time.
But that means that the following statement is valid,

Theorem 5.1, The permissible controls u° (5.4) and v° (5.5)
in the domain ¢ (2.5) close the system (1.1),(%.2) by a differential feed-
back loop.

6, Let us now consider the problem of the optimum of the controls u°
(5.4) and v° (5.5) in the sense of the original problem (1.1),(1.%) of the
minimax time elapsing before the encounter,

First of all, it can be shown, a8 in 8ection 2, that when both partners
follow the rules (5.4) and (5.5) for ¢ 2 r , the encounter of the motions
y(t) and  2(t) occurs at.the instant t =71+ T° [y (1) —z (1), p (v) — v (7)),
in other words the time T elapsing before the encounter is equal to
Cx(+r), ¢(+)] for any initial position x(v)= y(r)—2(r) and ((r) = uir) -
~ v(r) > 0, for which the time optimum control problem (2.2),(2.3) has the
solution MP<e .,

However, that case presents little interest, since the most interesting
cases in the pursuit problems are those for which one of the partners does
not follow the standard behavior.

Let us assume now that the control u 1s always chosen in the form of
the function (5.4), i.e. in agreement with the nule (2.4) and the control v
is realiged in the form of some continuous function wv(¢) which satiasfies
the conditions (1.%) and (4.1). We shall assume that the process is con-
sidered from the instant ¢ = r , and that the values of y(t), #(t), ulr),
v(r) at that instant are such, that the point z = z (1) = ¥ (t)—2z(1),
{=10(t)=p(r) — v(r) 1s 1n the domain ¢ . It can be shown, that in
that oase the encounter of the motions y(z) and g(¢) must occur not later
than at the instant ¢ = 1t 4 7° [z (1), § (7)].

Let us consider the variations of V (1) =T° [z (1), L (t)] as a function of
time. As pointed out earlier in 8ection 5, the function P[ITQ’] is conti-
nuous in the domain ¢ , and, consequently the funetion V (t) = [z (), E(8)]
varies continuously with time along the continuous motions of the syatem
(1.1),(4,2). Let us assume that at some instant ¢ > r , for which the

2)
motions zl.l),(h.z) have not yet left the domain ¢ , there are such values
z=z@)=y () — z2(), L=C(@) =u(t) —v(t), for which the problem

T
. 1
T(T):minl[§ | B*F-2 (8)* i |p dﬁ]:—c,—(—t—)— for 2% (1)1 = —1 (6.1)
has & solution [ =1[,(t), T = T°(¢), satisfying the condition
1B*F L (T)*, ()] > 0 6.2)

Then, in that point x , { , T, the function y(T) has a positive deri=
vative 3y/aT , and from the theorem on impliocit funotions we deduce, that
the fungtion ZI°[x, ¢) is differentiable in the neighborhood of the point
x =x(¢), ¢ = ((¢t). Therefore, we can oaloulate the derivative (av(z)ht)u'..



270 XK Kpasovakis

z;:t)s: p:!ftv(.:it?. ssc;.:n the basis of Equations (1.1) and (%.2) for u=yu°
LAY 5 21 [ Y b (e oo _|up |, [vP
dt )u“-v: 2 -e"—r:[ D 4t ) by luy “”n)]+ a ["I 2: + -2—;] (6.3)
=1 =1 k=1

where ga,, and »,, are elements of the matrices 4 and p» . Simultaneously
the function W(ts = T° [z (1), L (t)], ealoulated on the motions x(¢), ((t) of
the axluu (2.2), for 1 = w(t) , has at the same point x = x J, ¢ =C(¢),
a derivative (g¥/3:), satisfying Bellman's equation

n o n r
min, (), = ()= 3 %ﬁ"[ D aE+ E b () |+

f==1 j=1

T ° (1) P
o (— L2 — (6.4)

sinoe ths functi ™[x, (] 1s an optimum Liapunov function for (2.2), and
the function wﬂ?:) i1s an optimum control. The quantity

n ° n r o
()= , %Z;T [2 “i:'”ﬁkz‘nl s+ ¢ (— 1)
1 )

=1 1=1

has & minimum for up = wf(¢z). Therefore Equations

G OT° L aTt )
EN i A S

i=1

(6.5)

are satisfied.

Substituting the value u° (5.4) in (6.3) and assuming » = v°+ 3v , where
v° 1is dzhﬂimd ?z the equality (5.5) we get the following eqiation by

taking (6.%) and (6.5) into consideration:
dv (t) are ||ovp
(_dt_)u%v =—1+ _E I2vl < -t (6.6)

since there follows from (5.1) that az”/ai < 0 when vy(T) increases. Thereby
Af 8v == 0, the strict inequality is satisfleda in (6.6).

Thus, the inequality (6.6) is satisfied at the point =z (f) =y (t) — z (),
f@=p@)—v(Q©
If the values of (3) and ({¢) can be found such that the solution

t = 8,(t) and T = 7°(t) of the prblemm (6.1) does not verify the condition
(6.2), that is for which the equality

|1B*F 1 (T)* 1y (0] = O
is satisfied, then the calculation of the derivative (aV/dt),., becomes more
diffioult since the theorem on the differentiability of the impliecit function
rz{.;, ¢] cannot be used any more. To study the behavior of the function
it

in the neighborhood of such points x = x(¢t) and ( = ((¢) we shall
associate with the system (2.2) the auxiliary system

dz/dt = Az + Bw + eFs (6.7}

for which € > © 1s a small parameter. Here F 1is
the unit matrix and g 18 the p~dimensional vector
of the complementary control. The problem of the
1imit time optimum control of the system (6.7)

(z (1) > a (v + T,°y =0, T,° = min

with “he constraints oo
Vlwo, coppae<e @ 68
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has the solution T,° [z (1), { (D], {w{:) {t), S(.? (£} for all x = 8(?; and
¢ = {{7) of the domain ¢ (2.5), in which the problem (2.2),(2.3) has a solu-
tion. The function 7.°{z, [} is differentiable in the neighborhood of any
point x = x{¢) , { = ¢\rj Whbre the problem (6.7),(6.8) has a finite solu~
tion T.°{z,(]1 >0, i.e. in any case, everywhere in the domain ¢ .

Purthermore, in the closed neighborhood of each point x, {( of ¢ the
following limit relations

imT,0 2, L] =T"[z ¢, limw()=w’(@), lims(t)=0 mpre-0 (6.9
are satisfied.uniformly.

Let us compare the variation of the functions V() =T7°[z (), {()] ana
V(1) =T, [z (t), { (t)] along the motion of the system (1.1), (1.4) for small
time intervals At > O , when p = u°— [vo+ 8v], s = O . The function
T, =V, satisfies Bellman's equation

ming, @V, /d) = (@, ] dt)fye g1} =1

on the basis of the system (6.7). Using this equation, the limit conditions,
(6.9), and estimating the derivative (dV, /d®),o_,,—q for t< 8¢+ At

in's manner similar to that used above for the function ¥ (see (6.3) to
(6.6)), we get the inequal'ty

Vit+ A —V () < — At (1 + % 1822 — O (&) (6.10)

where x > 0 18 a constant and the symbol 0(c) denotes an infinitesimally
small velue for ¢ - O .,

From (6.10) there follows that for u & u®, the inequality
+

aup (55 o <=1 (6.14)

is sutisfied for any control wv(¢) . Here the symbol Ssup (dV/dt),:._,, denotes
the highest right-hand side value of a derivative of the function ¥(t) at
the point x(¢) , ¢{¢) .

Thus, we come to the conclusion, that for u = u° and any choice of the
control v{¢) {1.4), the inequality (6.11) is satisfied for all values
t = 1, for which the motion =2 () =y () —z(t), L) =p{) —~v{
of the system (1.1},(4.2) still remains in the domain ¢ , determined by the

inequalities O —v@O >0 p@®>0, v©>0 I°[zt]l< oo (6 12)

where the function V() = T°[z(£),l(¢)] changes continuously with the varia-
tions of ¢ .

In the domain ¢ (2.5) the funection ﬁx,i] is positive definite every-
where, except on the axis x = 0 . The level surfaces 7°[x,(] = const > O
in the space {x,{]} are cones, the intersestion of which by surfaces

¢ = const > O are ellipses {Fig.l).

But in such a case the inequalities (6.6) and (6.11) mean that the motions
of the system (1,1),(4.2) for u = u° (5.4) and at any instant of time g2 7,
as long a&s such motions remain in the domain ¢ , intersect the surfaces
*[x,{] = const = g 1in the direction of decreasing of o4 , 1.2, from the
outside to the msidf. It follows, that for ¢ = 7 , the motion
2{t) =y (B —z(t), L) = u(t) —v(8) remains in the domsin ¢ as long as
el > 0 . It follows that, by virtue of (6.6) and (6.11), the inequaxl‘ﬁty

T4+ Tz (), LM =2t4+ T [z (), ()] (6.13)
is matisfied for all ¢ 2 r , as long as |x{z))] > O .

Since for all Hxﬂ >0, we have 7[x,0] > 0 , it follews from {6,13)
that for uy = y° (5, z the equality x(t)f = 0, or in other words the encoun-
ter of the motions y(¢) and #(¢t)} ocours no later than the instant

t =1+ T° [z (1), L (D]
Thus the following statement is valid,

Theorem 6,1, Let the point x(r) » y(r) — s(v), ¢(7)wu(r)=—v(r)
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be in the domain ¢ (2.5), and let us assume that for ¢ = v the control
u = u(t) 1s always chosen in agreement with the equality (5.4). Then, for
any continuous control v = v(t¢) , constrained by the relation (4.1), the
encounter of the motions y(¢) and g(¢) will occur no later than at the

instant t =t+T°lz (7), ¢ (v)]

We shall notice that if the control uv(t¢) differes from the optimum con-
trol v°(¢) (5.5) for a set of values of ¢ of the positive norm, on the
interval t<{t<C7t+ T°[z (1), {(t)] then for u = wo(t) (5.4) the
encounter of the motions y(¢) and #(¢) occurs earlier than
t =14 T°[z (1), L (t)], since in such a case for values ¢<+1+Ix(1), ¢(7)],
(6.13) yields a strict inequality of the type

t+ T lz(x), E(MI >+ T [z (), L] +e.

The theorem 6.1 shows that the control u°, determined by the equality
(6.4) 18 optimum in the glven sense for the tracking motion y(¢) (1.1).
More precisely, from this theorem, and from the condition that for any con-
trol u = u* , for a given choice of v = u*y/u , the encounter of y(¢t) and
z(t) does not occur before ¢t = v + 7. We note that 7° = min,max, 7 =

- Tu", vo_

7. In this section we shall consider the situation which arises when the
pursued motion z(¢) (1.1) 1s controlled by the condition (2.%).

Thus, we shall assume that at the moment ¢ = v we have the values
z(v) =y (v) — z (1), § (1) = pu(x) — v (1), which lie in the domain ¢ (2.5).
PFurthermore, for ¢t 2 1t the control v is chosen equal to v° (5.5) at all
instants at which the motion x(t) = y(¢) — #(z) , ¢(¢) = u(¢) — v(¢) remains
in the domain ¢ and until the encounter of the motions y(¢) and #(¢)
occurs. In such a case, and for any given instant of time, the inequality
inf (M)* >—1 (7.1)
dt u-0°
1s satisfied. This inequality is derived in a manner similar to that used
for deriving the inequalities {6.6) and (6.11). In the inequality (7.1) the
symbol inf (dT° / dt)}., represents the lowest right-hand side value of the
derivative of the function V (f) = T° [z (¢), { (f)], calculated along the
motions of the system (1.1),(4.2) for » = v° (5.5). Integrating the inequal-
1ty (7.1) with respect to time for all the instants of time for which the
motion x(tz), ¢(z) (1.1),(4.2) still remains in the domain ¢ and x(t)¥ 0,
we get the inequality
t—t>T° [z(), L) —T° Mz (), T ()] (7.2)
However, for further considerations in this sectlon, unlike in Section 6,
we must take into account thg new circumstances, which complicate the solu-
tion of the pursuit problem. In the case u = u° (5.4), considered in Sec-
tion 6, the inequalities (6.6),(5.11) guarantee the conservation of the
motion z (f) = y (t) — 2z (#), L (/) = p(¢) — ¥(t) 1n the domain ¢ (2.5) till
the encounter of the motions y(¢) and g(¢t) . On the contrary here, the
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motion x(t), C(t) for v wvo(t) and u # u°(t) can reach the boundaries
of the domain ¢ , before the encounter of y(t) and g(¢)
When the motion x(¢) , ((¢) touches the boundary

¢ at some instant of time ; — {4, one of the follow-
ing relations

" lim [ (1) — v ()] = 0 (1.3)
lim T° [z (t),p () — v ()] = oo (7.4)
lim p () =0 (1.5)

muat be satisfied when (-9 — (0. If the boundary
conditions (7.3) and (7.5) are satisfied, where at
t=%, z(®) 5= (0, then for ¢> ¢ the two motions
g(t) and g(¢} will behave freely, independently from
Fig. 2 he action of the controls u(¢) and uv(t) , the

8. resources of which, according to (7.3) and (7.5) are

exhausted at the instant ;—{. But under such con-

ditions the motions y(¢) and g{(¢t) do not encounter at all. If at the
moment ¢t = 0 the boundary condition (7.5) is the only one satisfled, and
z (8) =€ 0, then for ¢t>>% 1t 1s always possible to consider the control uv(z)
such that the encounter of y(t) and z(t) is unrealizable (for this, it is
sufficient to assume »(¢) =0 for ¢>9).

Thus, the control u = u(¢) , for which (7.5) occurs at the instant ¢t = @
but for which the encounter of the motions y(¢) and z{(¢) does not occur,
is not profitable for the pursulng object, and in the future we shall not
consider such cases.

In the case in which the relations (7.?) or (7.4) are satisfied before
the encounter of the motions y(t) and g(t} but the relation (7.5) is not
satisfied, an even more confused situation occurs, where the rule (2.4) can-
not be used in order to control by means of the motions (1.1), since then,
the motion (1.1),(4.2) goes out of the domain ¢ 4in which this rule is
meaningful,

An analogous situation arises in those cases in which, right from the
beginning of the process, quantities z(t) = y (1) — 2z (1), § (1) = p (V) — v (7).
which do not belong to the domain  are obtained for ¢ = v . A comprehen-
slve discussion of that case goes out of the frame of the present work.

We shall assume that the motion z (t) =y (f) — z (), L () =p () — v (¢)
does not leave the domain # for all ¢ = 1 before the encounter of the
potnts y(¢) and x(t) . However, even in such a case, 1t is not pessible .
to conclude from the inequalities (7.1) and (7.2) that the encounter of y(t¢)
and z(¢) will not occur earlier than at the instant g= =+ To[x(r), ¢(7)].
Consequently, although the functions 7T°[x,{] , w°[x,() and v°[x,{] satisfy
Bellman's equation

@

min, max, (%T)u = max, minu(d- - (dTW

-dl—)u. v = W;u". v° =—1 (7'6)
in the domain ¢ , even when the motions x(t) , ¢(¢) do not leave that do-
main, the value 71° and the pair of controls y°, v° do not have a correspond-
ing meaning of max min,T and a saddle point {y°,v°} for the game [8) which
corresponds to the given pursuit problem. The conclusion is such that for
x(t) - 0 the quantity 7°[x(t), ¢(¢)] can avoid going to zero, if ((t) -0
(see Fig.2).

Such a situation occurs for instance in the following simple problem.

Example 7.1 . We shall consider the systems (1.1) described by
the first order equations
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dy / dt = u, dz/dt = v (7.7)

where y, 2, u and v =are scalars. In agreement with (4,2) the variations
of the quantitles

wo={woa  vwo={s@ma

are described by Equations

W dv v?
a — T o dt T T o @8
In this case, the aystem (2.2) becomes
dr/dt =w (z=y—z,0=1u—0v (1.9)

Let 1 < O . We shall try to choose the initial conditions x(r) = y(r)-
- z(r) and ¢(r) = u(r) — v(t) and the control u{t) s-r £ ¢ < 0), such that
for all time «+ < ¢ < O, along the motion x(t), (7.9) for which u = u(t),
v = v(¢) (5.5), the condition

{z(0, L} e, To{z (), L] =1 (7.10)

is satisfied, and the encounter g(t) » g(t) ocours for ¢ = 0 . In order
to satisfy the conditions (7.10) it is sufficient, accordinz to (5.1), that

the condition
LO=p)—v@)==z(@)>0 (744

be satisfied since in the given case we have r(¢) = 1 in (5.1). Control
w,®(t), calculated according to (5.2) 1is

w () = — z (1) {7.12)
and consequently, in agreement with (5.5), (7.11) and (7.12) we have the con-
dition - 4c

()= — v (1) (7.13)
Prom (7.8) and (7.13), choo.'ng v(0) = 1 , we get
v (f) = et (7.14)
Then, from (7.9),(7.11),(7.13) and (7.14) it follows
p(n)=e"t 4+ 2, u(ty=— ¢+ dz/dl (7.15)

Now the function x(¢) is determined from the differential equation
obtained by substituting (T7.15) in the first equation (7.8); this equation
has the form

dzfdt = —z (t)— V z (t) e+ 22 (1) (7.16)
For the condition x(0) = 0 , Equation (7.16) can be solved in the form
of the series 2 (1) =Vt + 9 (1), @ (1) = agt® - ot - . . . (7.17)

whereupon we get for the function o(t) , the differential equation
dg /dt = [ [1, 9]

which has a holomorphic right-hand side in the neighborhood of the point
t =0, x =0 . Thus, according to Cauchy's theorem [10] there follows the
convergence of the series (g.l? for sufficiently small values of ¢ . Pur-
thermore, the function x(t} (7.17) is positive for small values of ¢ .

Thus, for sufficlently small values of t(r = ¢ < 0O) we design the control

(7.15) Ut vt de / dt

u(t)y= —e¢e
such, that although the control v = v°Sx(t), ¢(t)] 1s chosen for all
t < (1, 0) always in agreement with (2.4), i.e. in'the form (5.5), where
T [z (), tMI=1(t<t<0), 1.e. (dT°/dt), .. =0, yet the encounter of the
motions y(¢) and z(t) becomes real for ¢ = O . Consequently, in the given
example, the time T elapsihg before the encounter,for » = p°, is smaller

than 7°[x(1), ¢(1)] .
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This ¢ le proves the statement given above, that in general, the quan-
tity Tolx(7), ¢{7)] 1s not a minimax of the time elapsing before the encoun-
ter of y(J and z{¢), and that the pair of controls uw° (5.4) and »° (5.5)
does not represent a saddle point [9] of the corresponding game even if we
1imit ourselves to the controls and v which do not move the motions
(3.1),(%.2) out of the domain ¢ l(2.5).

More specifiocally, the example shows the possibllity of such varlations
of the control u from u°, for which, although the second motion in (1.1)
remains controlled according to (2.#? for all ¢ > 1t , the encounter occurs
earlier than at the instant t¢=2o[y(c)—2(7), u(r)—v(r)])+r . However, 1t can
occur inside the domain ¢ only at the condition that ((t)= p(e)-v(t) ~o,

but then lim T° [z (1), § (¢)] = 0.
The following statement is valid.

Theorem 7.1 . Let us assume that at the instant ¢ = 7 we have
the quantities z (1) = y (v) — z (1), { (1) = p (v) — v (1), which are
located in the domain ¢ (2.5). If during the time ¢

t<t<p<lt+ T°lz (1), L (v)] (7.18)

the motion Z(t) =y () — 2(),{ () =p(t) — v (f) remains in the domain
¢ , where the inequality ¢((¢)>¢ (e> 0 1s a constant), is satisfied,
and the control v = v(¢) for ¢ 2 1 1s chosen in agreement with the equa-
1ity (5.5), then the encounter of the motions y(¢) and x(¢) cannot occur
at the instant { = ¢

Proof . The quantities 7°[z (1), (?], z(t) and (¢(¢) change continu-
ously along the motion of the system (1.1).(%.2). Consequently, under the

conditions of the theorem the inequality ( (4) > € >0 1s satisfied at the
instant ¢ = O If,in spite of the statement of the theorem, we take z (§)=0,

we must have lm 7° [z (2), L ()] =0 ftor t =& —0 (7.19)

gince the quantity 7° [z, { (#)] is continuous and positive definite in x
for [ (8) >z But the relationc (7.18),(7.19) and (7.2) are contradictory;
this contradiction proves the theorem.

Note . From the proof of Theorem 7.1l. it cap be seen that for
< t+ 7° [z (1), T (1)] the condition lim 7° [z (1), {()] =0 when & — O,
cannot be eatuf{ed if the point x(g), ¢(¢) does not leave the domain ¢ ,
and the equality v = vo(¢) 1s always satisfied.

8., The theorems 6.1 and 7.1 show that the cholce of the control
v = v lz.(t), § ()] (5.5) for the second motion (1.1) will be expedient in
the domain ¢ , at least until CQ:) =p @) — v(t) > ¢, where ¢  1s some
positive number arbltrarlily chosen beforehand.

At the same time, the example 7.1 shows that for [ (t) =p (t) — v (8) —» 0
but lim 7° (2 (t), p(@) —v (@150 (¢t =9 — 0), the motion 2(¢), can
be sometimes caught-up by the motlon y(t), (for £ =) before the instant

=1+ T° [z (1), {(7)], 1f this motion g(¢) 1s also rigorously controlled
according to (2.%) when ((t) < ¢ . Thus, as far as the motion g#(¢) 1s con-
cerned when [ () =pu () —v () —0 for T° [z (¥), L ()] >e >0 1t
would be worth while changing this motion to another coatrol rule distinct
from the rule (5.5).

»

The constructlon of such an optimum control method, which would be descri-
bed by the funetlon ¢ = p [y (¢), z (£), u (¢), v ()] and which would take into
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account the indicated circumstances is a different complicated problem which
is beyond the acope of this paper.

However, 1f one is to accept the possibility of additional information on
the motion y(t) » then we can indicate a series of simple and rather expedi-
ent control methods by the motion gz(¢). One such method follows.

We shall consider the problem of the pursuit of the second of the motions
in (1.1) by the first, under conditions which facilitate the problem of the
control by the pursued motion £(¢t) . We shall assume, as in the previous
problem, that in the device generating the control u , the realized quanti-
ties y(t), #(t), u(t), v(¢) can be taken into account at any instant ¢ .
However, we shall now assume, that in the device generating the control v ,
one can take into sccount, together with those values alsoc the quantity
u{t — n), where n > 0 18 a small constant quantity. In other words, we
shall accept the possibility of choosingz the control wv(z) in the form

v=7v [y (t)! z (t), [ (t)’ v (t)r u(t — TI)]
Then we shall take for u(t) and v(¢) some plece-wise cont*inuous realiza-
tions. In such a case, in the situations pointed out in this sectlon, we

can assume
v(t) =u(t —mn) (8.1)
if the delay n 1s a sufficiently small quantity.

The control v(¢) (8.1) has the following property. If at the instant
t = v the quantities x(7) and ((r) are obtained in the domain ¢ , then,
for a sufficiently small 1 > O , the control v(¢) (8.1) guarantees the
encounter of the motions y(¢) and g#(¢t) not earlier than at the instant
t>1+T° [z (1), § (t)] —0,, where O, 1s an arbitrarily small positive
number chosen beforehand. If at the initial instant ¢ = 7 we have quanti-
ties x{r) and ((r) outside the domain ¢ (2.5), then for a sufficiently
small n > O, the control wv(¢) (8.1) guarantees that the encounter of the
motions y(t) and g(¢) will not occur earlier than at ¢t > t + 84, where g,
is an arbitrary large positive number chosen beforehand. We shall not carry
out the investigation of those properties.

Taking Theorems 6.1 and 7.1 into account, and also the propertles of the
control »(t) (8.1), we get the following rule for choosing the control v
in an expedient manner. Let us choose somre small numbers ¢,> O and ¢z>O.
If at the instant ¢ we have values x(t)= y(2)—2(¢) and ¢(¢)=n{e)— v(¢)
satisfying the inequalities

L) > ey T°lz @), LI oo (8.2)
then, the control v 1s chosen according to (5.5). If at the instant ¢
one of the conditions (8,2) does not hold, where T° [z (£), § (£)] > €5, then
the control v is chosen acgording to (8.1).

Then, in order to avold the appearance of slipping modes in the case of
frequent changes of the controls v (5.5) and (8.1) along the motion gl.l),

(4.2), we can introduce a small hysteresis in the controls (5.5),(8.1). More
precisely, it is possidle to change from the control (5.5) to the control
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{8.1) when the inequalities
L) >eld, T° [z (1), L (D] < o0 (8.3)

do not hold any more, and to change from the control (8.1) to the control
(5.5) vwhen the inequalities

() > e, T° [z (1), L ()] <O (8.4)
are satisfied, where e‘f’ >E§’)>0 and § 4is a sufficiently large number.

9. To conclude this paper we shall discuss the relation between the rule
{2.4) used for choosing the controls u = u° (5.4) and v = v° (5.5) and the
aiming rule formulated in [1] and based on guiding the motiops y{t) and
2(¢) to the point 20(:z) , intersection of the boundaries (see Fig.3) of the
domains of accessibility HW[y (8), u (), t + Tyl anda H®[z (t), v (¢), t + T}
&%) of the processes y(t) and 2(¢) at the
instant ¢ 4 Ty [y (1), z(f), n (), v (9]
at which the process y(¢) takes over the
process g(t) (see [1], pages 7 to 9).

(e

4w
For definiteness, we shall only con-
2(t)  gyder here, as was done earlier in Sec-
tions 6 to 8, the case of boundaries (1.2)
" #z7  of the type (1.4). We shall show that
the two rules coincide with one another,

Fig. 3
First of all we shall notice that the

T Iz (x), L(®l=T,ly(), z(x), p (1), v (V) CRY
is valid, where both guantities have & meaning for the same values of
(1) =y () —z(1), L) =p @ —v(7)

In fact, let us assume that for some x(7),{(r) the quantity °[x(r),
()] has a meaning, This means that there exists a control , ° (i), con-

strained by the condition o
PR [wMI<L ) {8.2)

and which brings the system into_ the state x{(t + 7°) = 0 . But in such &
case, for any given control v{¢} , constrained by the condition
- T®

equality

e
bl l=| § PpORa] <y 93)
the control *
w(t) = v (B +wr () 9.4)
satisfies the condition
T i
b e =] { lwpe] <vm+im=rm ©5)

L

and guarantees the encounter of the motions y(¢) and z(¢) at the instant

t =7+ 7° . And this means that the domsin of accessibllity y®¥[; (q),

v (1), T T"(} of th%fnotion z(¢) 18 in the domain of accessibility

HO [y (v, p (8, T+ of the motion y{t) . Consequently, for those values
of x{r) and ¢(7) the gquantity To [y (1), z (%), 1 (1), v (1})] hes & meaning,and

the inequality
18 satisfied. Toly (¥, 2 (), p (0, v (DI T [z (v), § ()] (9.6)

Now let us assume the opposite, that is, for realized valuea of y(-r) 3
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2(v) , u(r) and v(r) , the quantity 7, has a meaning. We shall consider

the problem of the control by the system (2.2) from the point x = x(r) to

the point x(r + T,) = 0O with the smallest possible norm

4Ty Y,
2

peeir @ =] § To@pa]"=r=mn 9.7)

Under conditions of full controllability of the asystem (2.2) this problem
has & sclution. If in (9.7) we have

() —v(1) (9.8)

it means that 7 < T. and as a consequence of the inequality (9.6) the equi-
valence of the quantities 7, and 7° will be proved.

Let us assume now that in (9-7) we had
S p(n—v( (9.9)

Let w_(¢)° be an optimum control solying the problem of the control
z=z (1), z(t+ Ty =0 for the system (2,2) with the conaition (9.7). Then

T,
2(t -+ To)=F (To) = (v) -+ S F(v+T*—t) Bw, (1) dt =0 (9.10)
or 4T,
—z(r) = g F(v—1) Bw (1) dt (9.11)
b7
Let us choose the control 2o (1) =w. ()°v (1} /(° . It satisfies the con~
dition
4T, 3,
[ § 20 () P dt} "y (1) (9.12)
T
Conseguently, from the meaning of the quantity T, , we must find a con-
trol u,?g) which satisfies the condition
-+ T, .
[ § hwora] <pm (9.13)
t

and guarantees the encounter of the motions y{¢) and s(¢) at the instant
t =t +7T, . Therefore the controls u,{s) and v,(¢) must satisfy an equa-
11ty analogous to the equality (9.11)
+T,
— (1) = g F (¥ —1t) B [uo(8) — vo (8)] ¢ (9.14)
k]

Taking the values v, (¢) and the equality (9.11) we get from (9.1%) Equa-
tion
T,

r(r) = § F (v —1t) Bug () dt (9.15)

which means that the control p = u,(t) solves the problem of changing the
eyateumze.e) from the state 2 — ([{° -+ v (1)]/ %)z (1) at the instant ¢ = «
to the state x{1 + T,) = O . The smallest norm_ p° [w] of the control
w(t) , which solves such a problem according to {9.7) and (9.9) 1s the fol-
lowing:

_rtve
QO

Pz, (W] = (ij‘_&zif_)) =" v @) >p (1) (9.16)

But the inequality (9.16) contradicts the assumption that P [¥o] Sp (1)
This contradiction eliminates the inequality {(9.9), and this, according to
the previous reasoning, shows the equivalence of the quantities I7° and T,.
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We shall show now that the rule (2.4) for choosing the controls u°(r)
and v°(r) represents the aiming of the motions y(¢) and g(¢) at the point
§°('|') at the instant ¢ = 7 + TPe v + T,.

In fact, the control u () = w-° (f)p (v): (u (v) — v (T)) brings the
motion p(¢) to the boundary of the domain HW [y (1), n (1), T+ T°), at
the instant ¢ =~ 1 + T°, since the control w;° () 1s optimum for the problem
(2.1) to (2.3).

Similarly, the control ¥ () = w:° ({)v (1) : (u (v) —v (7)) brings the
motion #(t) to the boundary of the domain H® [z (1), v (1), T + T°] at
the instant ¢ = 7 + T°,

Furthermore, those controls realize the encounter of the motions y(¢)
and gz(¢) at the time ¢ = ¢ + 7. Consequently, the controls
o P (O L N VAL (9.17)

p(r)y—v(’ p@E®)—vE

aim the motions y{(¢t) and g(t) at the single point £°(r) where the bound-
arles of the domains H{(1) and F(2) intersect. These boundaries appear as
similar figures, dimensions of which are in a ratio g/v . This proves our
statement on the coincidence of the rules (2.4) and the rule related to the
aiming at the point £°(r) of [1]. Taking into account the results formu-
lated in the previous sections, we come to the following conclusion.

u==u

If for ¢t = 1 there were quantities p(r) , 2(+) and u(r) > v(r) , for
which there exists a finite instant ¢ = ¢ + T, at which the process y(e)
(1.1) takes over the process £(t) (1.1), and if for ¢ = tr the control
u(t) is always chosen from the conditions of aiming the motion y(t) at the
point e°(¢) , then, in the pursuit process, the system, for all times before
the encounter, 1s closed by a differential feedback loop, and the encounter
occurs not later than for ¢ = 1 + T,.

Similarly, 1f uv(¢) aims the motion #(¢) at the point £°(t) , then the
encounter occurs for f =t + T [y (1),z (T),H (T)sV(T)]-

If, however, the control u{t) does not follow the law which aims at the
point £°(t) , then the choice of the control u(¢) from the conditions aim-
ing the motion 2(t) at the point e°(z) at all times for ¢ = v , does not
guarantee a time less than T, [y (1), z (7), p (1), v (v)], elapsing bvefore
the encounter, even if we limit ourselves to such controls wu(t) , which for
t 2 1, will keep finite values of T, [y (¢), z (2), p (2), v (D).

However, the combined control wv(¢), which for Ty [y (2), z (2), p (2),
v($)] <O and p (f) — v (f) > €, >0 1s chosen from the conditions of aim-
ing at the point €°(¢) , and for T, [y (), z(¢), p (t), v(t)] >0 1s chosen
equal to u(¢t — n) for sufficiently small n > 0 , guarantees an encounter
not earlier than at the moment t =1 - Ty ly (1), z(z), p (x), v (D] — O,
where O 1s an arbitrary positive number chosen beforehand (see page 276).

Finaily, let us describe a computational scheme, on the basis of which
are constructed the controls y° or u° determined by the rule (2.%). This
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scheme follows from the rule [2], which describes the construction of an
optimum control w°. (f), which solves the problem (2.2),(2.3) of the limit
time-optmum response. In agreement with this rule we must choose a func-
tional space ({h (f)}(-.0) (v <<t <{®) with the norm x_4 |} ()], for which
the quantity 0-.0 [w U)], which bounds the control resources, represents the
norm of the llnear functional

@, [1] = \w' (1) h(t) dt (9.18)

determined on the functions n(z) . Then, we must solve the problem of the
conditional minimum

gy

H

7 (0—7) = minxs, of 3 Lh® (t)] for 2% (v) 1 == e 1 (9.19)

i ! - P
Wi () = 2 it =) e W5y =+
i=1
The number ©°, for which
TE°—1 =@ -—vEOIt=80@" (9.20)
determines the quantity 7° [z (%), { (D] =8° — 1.
The control w°: (f) is determined from the maximum conditions
H°
S w." (H)* h°(t)dt = max,  for p_ go[w(t)] = () (9.21)
T
After the determination of w°; (T) the values of u°(7) and °(7) are
determined according to the relations (2.4).

Thus, if one of the partners stays with the rules (2.4), the procedure
for the computation of the control u°(¢) (or v°(t)) at actual instants
t = v results in the continuous correction of the quantities @&° (f) and of
the functions uP,(t) in agreement with Equation (9.20) and relation (9.21).
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